![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscmet | Structured version Visualization version GIF version |
Description: The property "𝐷 is a complete metric." meaning all Cauchy filters converge to a point in the space. (Contributed by Mario Carneiro, 1-May-2014.) (Revised by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
iscmet.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
Ref | Expression |
---|---|
iscmet | ⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvex 6929 | . 2 ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝑋 ∈ V) | |
2 | elfvex 6929 | . . 3 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝑋 ∈ V) | |
3 | 2 | adantr 480 | . 2 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅) → 𝑋 ∈ V) |
4 | fveq2 6891 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (Met‘𝑥) = (Met‘𝑋)) | |
5 | 4 | rabeqdv 3443 | . . . . 5 ⊢ (𝑥 = 𝑋 → {𝑑 ∈ (Met‘𝑥) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅} = {𝑑 ∈ (Met‘𝑋) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅}) |
6 | df-cmet 25178 | . . . . 5 ⊢ CMet = (𝑥 ∈ V ↦ {𝑑 ∈ (Met‘𝑥) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅}) | |
7 | fvex 6904 | . . . . . 6 ⊢ (Met‘𝑋) ∈ V | |
8 | 7 | rabex 5328 | . . . . 5 ⊢ {𝑑 ∈ (Met‘𝑋) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅} ∈ V |
9 | 5, 6, 8 | fvmpt 6999 | . . . 4 ⊢ (𝑋 ∈ V → (CMet‘𝑋) = {𝑑 ∈ (Met‘𝑋) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅}) |
10 | 9 | eleq2d 2815 | . . 3 ⊢ (𝑋 ∈ V → (𝐷 ∈ (CMet‘𝑋) ↔ 𝐷 ∈ {𝑑 ∈ (Met‘𝑋) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅})) |
11 | fveq2 6891 | . . . . 5 ⊢ (𝑑 = 𝐷 → (CauFil‘𝑑) = (CauFil‘𝐷)) | |
12 | fveq2 6891 | . . . . . . . 8 ⊢ (𝑑 = 𝐷 → (MetOpen‘𝑑) = (MetOpen‘𝐷)) | |
13 | iscmet.1 | . . . . . . . 8 ⊢ 𝐽 = (MetOpen‘𝐷) | |
14 | 12, 13 | eqtr4di 2786 | . . . . . . 7 ⊢ (𝑑 = 𝐷 → (MetOpen‘𝑑) = 𝐽) |
15 | 14 | oveq1d 7429 | . . . . . 6 ⊢ (𝑑 = 𝐷 → ((MetOpen‘𝑑) fLim 𝑓) = (𝐽 fLim 𝑓)) |
16 | 15 | neeq1d 2996 | . . . . 5 ⊢ (𝑑 = 𝐷 → (((MetOpen‘𝑑) fLim 𝑓) ≠ ∅ ↔ (𝐽 fLim 𝑓) ≠ ∅)) |
17 | 11, 16 | raleqbidv 3338 | . . . 4 ⊢ (𝑑 = 𝐷 → (∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅ ↔ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅)) |
18 | 17 | elrab 3681 | . . 3 ⊢ (𝐷 ∈ {𝑑 ∈ (Met‘𝑋) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅} ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅)) |
19 | 10, 18 | bitrdi 287 | . 2 ⊢ (𝑋 ∈ V → (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅))) |
20 | 1, 3, 19 | pm5.21nii 378 | 1 ⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2936 ∀wral 3057 {crab 3428 Vcvv 3470 ∅c0 4318 ‘cfv 6542 (class class class)co 7414 Metcmet 21258 MetOpencmopn 21262 fLim cflim 23831 CauFilccfil 25173 CMetccmet 25175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7417 df-cmet 25178 |
This theorem is referenced by: cmetcvg 25206 cmetmet 25207 iscmet3 25214 cmetss 25237 equivcmet 25238 relcmpcmet 25239 cmetcusp1 25274 |
Copyright terms: Public domain | W3C validator |