![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isf32lem8 | Structured version Visualization version GIF version |
Description: Lemma for isfin3-2 10391. K sets are subsets of the base. (Contributed by Stefan O'Rear, 6-Nov-2014.) |
Ref | Expression |
---|---|
isf32lem.a | ⊢ (𝜑 → 𝐹:ω⟶𝒫 𝐺) |
isf32lem.b | ⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) |
isf32lem.c | ⊢ (𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹) |
isf32lem.d | ⊢ 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹‘𝑦)} |
isf32lem.e | ⊢ 𝐽 = (𝑢 ∈ ω ↦ (℩𝑣 ∈ 𝑆 (𝑣 ∩ 𝑆) ≈ 𝑢)) |
isf32lem.f | ⊢ 𝐾 = ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽) |
Ref | Expression |
---|---|
isf32lem8 | ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐾‘𝐴) ⊆ 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isf32lem.f | . . . 4 ⊢ 𝐾 = ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽) | |
2 | 1 | fveq1i 6898 | . . 3 ⊢ (𝐾‘𝐴) = (((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) |
3 | isf32lem.d | . . . . . . . 8 ⊢ 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹‘𝑦)} | |
4 | 3 | ssrab3 4078 | . . . . . . 7 ⊢ 𝑆 ⊆ ω |
5 | isf32lem.a | . . . . . . . 8 ⊢ (𝜑 → 𝐹:ω⟶𝒫 𝐺) | |
6 | isf32lem.b | . . . . . . . 8 ⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) | |
7 | isf32lem.c | . . . . . . . 8 ⊢ (𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹) | |
8 | 5, 6, 7, 3 | isf32lem5 10381 | . . . . . . 7 ⊢ (𝜑 → ¬ 𝑆 ∈ Fin) |
9 | isf32lem.e | . . . . . . . 8 ⊢ 𝐽 = (𝑢 ∈ ω ↦ (℩𝑣 ∈ 𝑆 (𝑣 ∩ 𝑆) ≈ 𝑢)) | |
10 | 9 | fin23lem22 10351 | . . . . . . 7 ⊢ ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → 𝐽:ω–1-1-onto→𝑆) |
11 | 4, 8, 10 | sylancr 586 | . . . . . 6 ⊢ (𝜑 → 𝐽:ω–1-1-onto→𝑆) |
12 | f1of 6839 | . . . . . 6 ⊢ (𝐽:ω–1-1-onto→𝑆 → 𝐽:ω⟶𝑆) | |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽:ω⟶𝑆) |
14 | fvco3 6997 | . . . . 5 ⊢ ((𝐽:ω⟶𝑆 ∧ 𝐴 ∈ ω) → (((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽‘𝐴))) | |
15 | 13, 14 | sylan 579 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽‘𝐴))) |
16 | 13 | ffvelcdmda 7094 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐽‘𝐴) ∈ 𝑆) |
17 | fveq2 6897 | . . . . . . 7 ⊢ (𝑤 = (𝐽‘𝐴) → (𝐹‘𝑤) = (𝐹‘(𝐽‘𝐴))) | |
18 | suceq 6435 | . . . . . . . 8 ⊢ (𝑤 = (𝐽‘𝐴) → suc 𝑤 = suc (𝐽‘𝐴)) | |
19 | 18 | fveq2d 6901 | . . . . . . 7 ⊢ (𝑤 = (𝐽‘𝐴) → (𝐹‘suc 𝑤) = (𝐹‘suc (𝐽‘𝐴))) |
20 | 17, 19 | difeq12d 4121 | . . . . . 6 ⊢ (𝑤 = (𝐽‘𝐴) → ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤)) = ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴)))) |
21 | eqid 2728 | . . . . . 6 ⊢ (𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) = (𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) | |
22 | fvex 6910 | . . . . . . 7 ⊢ (𝐹‘(𝐽‘𝐴)) ∈ V | |
23 | 22 | difexi 5330 | . . . . . 6 ⊢ ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴))) ∈ V |
24 | 20, 21, 23 | fvmpt 7005 | . . . . 5 ⊢ ((𝐽‘𝐴) ∈ 𝑆 → ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽‘𝐴)) = ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴)))) |
25 | 16, 24 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽‘𝐴)) = ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴)))) |
26 | 15, 25 | eqtrd 2768 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴)))) |
27 | 2, 26 | eqtrid 2780 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐾‘𝐴) = ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴)))) |
28 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → 𝐹:ω⟶𝒫 𝐺) |
29 | 4, 16 | sselid 3978 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐽‘𝐴) ∈ ω) |
30 | 28, 29 | ffvelcdmd 7095 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐹‘(𝐽‘𝐴)) ∈ 𝒫 𝐺) |
31 | 30 | elpwid 4612 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐹‘(𝐽‘𝐴)) ⊆ 𝐺) |
32 | 31 | ssdifssd 4141 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴))) ⊆ 𝐺) |
33 | 27, 32 | eqsstrd 4018 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐾‘𝐴) ⊆ 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3058 {crab 3429 ∖ cdif 3944 ∩ cin 3946 ⊆ wss 3947 ⊊ wpss 3948 𝒫 cpw 4603 ∩ cint 4949 class class class wbr 5148 ↦ cmpt 5231 ran crn 5679 ∘ ccom 5682 suc csuc 6371 ⟶wf 6544 –1-1-onto→wf1o 6547 ‘cfv 6548 ℩crio 7375 ωcom 7870 ≈ cen 8961 Fincfn 8964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-om 7871 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9963 |
This theorem is referenced by: isf32lem9 10385 |
Copyright terms: Public domain | W3C validator |