MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin7-2 Structured version   Visualization version   GIF version

Theorem isfin7-2 10425
Description: A set is VII-finite iff it is non-well-orderable or finite. (Contributed by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
isfin7-2 (𝐴𝑉 → (𝐴 ∈ FinVII ↔ (𝐴 ∈ dom card → 𝐴 ∈ Fin)))

Proof of Theorem isfin7-2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isfin7 10330 . . . 4 (𝐴 ∈ FinVII → (𝐴 ∈ FinVII ↔ ¬ ∃𝑥 ∈ (On ∖ ω)𝐴𝑥))
21ibi 266 . . 3 (𝐴 ∈ FinVII → ¬ ∃𝑥 ∈ (On ∖ ω)𝐴𝑥)
3 isnum2 9974 . . . . 5 (𝐴 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥𝐴)
4 ensym 9028 . . . . . . . . 9 (𝑥𝐴𝐴𝑥)
5 simprl 769 . . . . . . . . . . 11 ((¬ 𝐴 ∈ Fin ∧ (𝑥 ∈ On ∧ 𝐴𝑥)) → 𝑥 ∈ On)
6 enfi 9219 . . . . . . . . . . . . . . 15 (𝐴𝑥 → (𝐴 ∈ Fin ↔ 𝑥 ∈ Fin))
7 onfin 9259 . . . . . . . . . . . . . . 15 (𝑥 ∈ On → (𝑥 ∈ Fin ↔ 𝑥 ∈ ω))
86, 7sylan9bbr 509 . . . . . . . . . . . . . 14 ((𝑥 ∈ On ∧ 𝐴𝑥) → (𝐴 ∈ Fin ↔ 𝑥 ∈ ω))
98biimprd 247 . . . . . . . . . . . . 13 ((𝑥 ∈ On ∧ 𝐴𝑥) → (𝑥 ∈ ω → 𝐴 ∈ Fin))
109con3d 152 . . . . . . . . . . . 12 ((𝑥 ∈ On ∧ 𝐴𝑥) → (¬ 𝐴 ∈ Fin → ¬ 𝑥 ∈ ω))
1110impcom 406 . . . . . . . . . . 11 ((¬ 𝐴 ∈ Fin ∧ (𝑥 ∈ On ∧ 𝐴𝑥)) → ¬ 𝑥 ∈ ω)
125, 11eldifd 3958 . . . . . . . . . 10 ((¬ 𝐴 ∈ Fin ∧ (𝑥 ∈ On ∧ 𝐴𝑥)) → 𝑥 ∈ (On ∖ ω))
13 simprr 771 . . . . . . . . . 10 ((¬ 𝐴 ∈ Fin ∧ (𝑥 ∈ On ∧ 𝐴𝑥)) → 𝐴𝑥)
1412, 13jca 510 . . . . . . . . 9 ((¬ 𝐴 ∈ Fin ∧ (𝑥 ∈ On ∧ 𝐴𝑥)) → (𝑥 ∈ (On ∖ ω) ∧ 𝐴𝑥))
154, 14sylanr2 681 . . . . . . . 8 ((¬ 𝐴 ∈ Fin ∧ (𝑥 ∈ On ∧ 𝑥𝐴)) → (𝑥 ∈ (On ∖ ω) ∧ 𝐴𝑥))
1615ex 411 . . . . . . 7 𝐴 ∈ Fin → ((𝑥 ∈ On ∧ 𝑥𝐴) → (𝑥 ∈ (On ∖ ω) ∧ 𝐴𝑥)))
1716reximdv2 3160 . . . . . 6 𝐴 ∈ Fin → (∃𝑥 ∈ On 𝑥𝐴 → ∃𝑥 ∈ (On ∖ ω)𝐴𝑥))
1817com12 32 . . . . 5 (∃𝑥 ∈ On 𝑥𝐴 → (¬ 𝐴 ∈ Fin → ∃𝑥 ∈ (On ∖ ω)𝐴𝑥))
193, 18sylbi 216 . . . 4 (𝐴 ∈ dom card → (¬ 𝐴 ∈ Fin → ∃𝑥 ∈ (On ∖ ω)𝐴𝑥))
2019con1d 145 . . 3 (𝐴 ∈ dom card → (¬ ∃𝑥 ∈ (On ∖ ω)𝐴𝑥𝐴 ∈ Fin))
212, 20syl5com 31 . 2 (𝐴 ∈ FinVII → (𝐴 ∈ dom card → 𝐴 ∈ Fin))
22 eldifi 4125 . . . . . . 7 (𝑥 ∈ (On ∖ ω) → 𝑥 ∈ On)
23 ensym 9028 . . . . . . 7 (𝐴𝑥𝑥𝐴)
24 isnumi 9975 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑥𝐴) → 𝐴 ∈ dom card)
2522, 23, 24syl2an 594 . . . . . 6 ((𝑥 ∈ (On ∖ ω) ∧ 𝐴𝑥) → 𝐴 ∈ dom card)
2625rexlimiva 3143 . . . . 5 (∃𝑥 ∈ (On ∖ ω)𝐴𝑥𝐴 ∈ dom card)
2726con3i 154 . . . 4 𝐴 ∈ dom card → ¬ ∃𝑥 ∈ (On ∖ ω)𝐴𝑥)
28 isfin7 10330 . . . 4 (𝐴𝑉 → (𝐴 ∈ FinVII ↔ ¬ ∃𝑥 ∈ (On ∖ ω)𝐴𝑥))
2927, 28imbitrrid 245 . . 3 (𝐴𝑉 → (¬ 𝐴 ∈ dom card → 𝐴 ∈ FinVII))
30 fin17 10423 . . . 4 (𝐴 ∈ Fin → 𝐴 ∈ FinVII)
3130a1i 11 . . 3 (𝐴𝑉 → (𝐴 ∈ Fin → 𝐴 ∈ FinVII))
3229, 31jad 187 . 2 (𝐴𝑉 → ((𝐴 ∈ dom card → 𝐴 ∈ Fin) → 𝐴 ∈ FinVII))
3321, 32impbid2 225 1 (𝐴𝑉 → (𝐴 ∈ FinVII ↔ (𝐴 ∈ dom card → 𝐴 ∈ Fin)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wcel 2098  wrex 3066  cdif 3944   class class class wbr 5150  dom cdm 5680  Oncon0 6372  ωcom 7874  cen 8965  Fincfn 8968  cardccrd 9964  FinVIIcfin7 10313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-int 4952  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-om 7875  df-1o 8491  df-er 8729  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-card 9968  df-fin7 10320
This theorem is referenced by:  fin71num  10426  dffin7-2  10427
  Copyright terms: Public domain W3C validator
OSZAR »