![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isgrpde | Structured version Visualization version GIF version |
Description: Deduce a group from its properties. In this version of isgrpd 18922, we don't assume there is an expression for the inverse of 𝑥. (Contributed by NM, 6-Jan-2015.) |
Ref | Expression |
---|---|
isgrpd.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
isgrpd.p | ⊢ (𝜑 → + = (+g‘𝐺)) |
isgrpd.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
isgrpd.a | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
isgrpd.z | ⊢ (𝜑 → 0 ∈ 𝐵) |
isgrpd.i | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) |
isgrpde.n | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) |
Ref | Expression |
---|---|
isgrpde | ⊢ (𝜑 → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isgrpd.b | . 2 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
2 | isgrpd.p | . 2 ⊢ (𝜑 → + = (+g‘𝐺)) | |
3 | isgrpd.z | . . 3 ⊢ (𝜑 → 0 ∈ 𝐵) | |
4 | isgrpd.i | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) | |
5 | isgrpd.c | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) | |
6 | isgrpd.a | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | |
7 | isgrpde.n | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) | |
8 | 5, 3, 4, 6, 7 | grprida 18642 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 0 ) = 𝑥) |
9 | 1, 2, 3, 4, 8 | grpidd 18638 | . 2 ⊢ (𝜑 → 0 = (0g‘𝐺)) |
10 | 1, 2, 5, 6, 3, 4, 8 | ismndd 18723 | . 2 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
11 | 1, 2, 9, 10, 7 | isgrpd2e 18919 | 1 ⊢ (𝜑 → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∃wrex 3067 ‘cfv 6553 (class class class)co 7426 Basecbs 17187 +gcplusg 17240 Grpcgrp 18897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-iota 6505 df-fun 6555 df-fv 6561 df-riota 7382 df-ov 7429 df-0g 17430 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-grp 18900 |
This theorem is referenced by: isgrpd 18922 dfgrp2 18926 imasgrp2 19018 unitgrp 20329 |
Copyright terms: Public domain | W3C validator |