MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgrpde Structured version   Visualization version   GIF version

Theorem isgrpde 18921
Description: Deduce a group from its properties. In this version of isgrpd 18922, we don't assume there is an expression for the inverse of 𝑥. (Contributed by NM, 6-Jan-2015.)
Hypotheses
Ref Expression
isgrpd.b (𝜑𝐵 = (Base‘𝐺))
isgrpd.p (𝜑+ = (+g𝐺))
isgrpd.c ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
isgrpd.a ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
isgrpd.z (𝜑0𝐵)
isgrpd.i ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
isgrpde.n ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 0 )
Assertion
Ref Expression
isgrpde (𝜑𝐺 ∈ Grp)
Distinct variable groups:   𝑥,𝑦,𝑧, +   𝑥, 0 ,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧

Proof of Theorem isgrpde
StepHypRef Expression
1 isgrpd.b . 2 (𝜑𝐵 = (Base‘𝐺))
2 isgrpd.p . 2 (𝜑+ = (+g𝐺))
3 isgrpd.z . . 3 (𝜑0𝐵)
4 isgrpd.i . . 3 ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
5 isgrpd.c . . . 4 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
6 isgrpd.a . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
7 isgrpde.n . . . 4 ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 0 )
85, 3, 4, 6, 7grprida 18642 . . 3 ((𝜑𝑥𝐵) → (𝑥 + 0 ) = 𝑥)
91, 2, 3, 4, 8grpidd 18638 . 2 (𝜑0 = (0g𝐺))
101, 2, 5, 6, 3, 4, 8ismndd 18723 . 2 (𝜑𝐺 ∈ Mnd)
111, 2, 9, 10, 7isgrpd2e 18919 1 (𝜑𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wrex 3067  cfv 6553  (class class class)co 7426  Basecbs 17187  +gcplusg 17240  Grpcgrp 18897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-iota 6505  df-fun 6555  df-fv 6561  df-riota 7382  df-ov 7429  df-0g 17430  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-grp 18900
This theorem is referenced by:  isgrpd  18922  dfgrp2  18926  imasgrp2  19018  unitgrp  20329
  Copyright terms: Public domain W3C validator
OSZAR »