![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isnsg4 | Structured version Visualization version GIF version |
Description: A subgroup is normal iff its normalizer is the entire group. (Contributed by Mario Carneiro, 18-Jan-2015.) |
Ref | Expression |
---|---|
elnmz.1 | ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} |
nmzsubg.2 | ⊢ 𝑋 = (Base‘𝐺) |
nmzsubg.3 | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
isnsg4 | ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmzsubg.2 | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
2 | nmzsubg.3 | . . 3 ⊢ + = (+g‘𝐺) | |
3 | 1, 2 | isnsg 19103 | . 2 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆))) |
4 | eqcom 2735 | . . . 4 ⊢ (𝑁 = 𝑋 ↔ 𝑋 = 𝑁) | |
5 | elnmz.1 | . . . . 5 ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} | |
6 | 5 | eqeq2i 2741 | . . . 4 ⊢ (𝑋 = 𝑁 ↔ 𝑋 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}) |
7 | rabid2 3460 | . . . 4 ⊢ (𝑋 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)) | |
8 | 4, 6, 7 | 3bitri 297 | . . 3 ⊢ (𝑁 = 𝑋 ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)) |
9 | 8 | anbi2i 622 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 = 𝑋) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆))) |
10 | 3, 9 | bitr4i 278 | 1 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3057 {crab 3428 ‘cfv 6542 (class class class)co 7414 Basecbs 17173 +gcplusg 17226 SubGrpcsubg 19068 NrmSGrpcnsg 19069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-sbc 3776 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7417 df-subg 19071 df-nsg 19072 |
This theorem is referenced by: conjnsg 19201 |
Copyright terms: Public domain | W3C validator |