MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnv Structured version   Visualization version   GIF version

Theorem isnv 30439
Description: The predicate "is a normed complex vector space." (Contributed by NM, 5-Jun-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
isnv.1 𝑋 = ran 𝐺
isnv.2 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
isnv (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec ↔ (⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑍(𝑥,𝑦)

Proof of Theorem isnv
StepHypRef Expression
1 nvex 30438 . 2 (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec → (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V))
2 vcex 30405 . . . . 5 (⟨𝐺, 𝑆⟩ ∈ CVecOLD → (𝐺 ∈ V ∧ 𝑆 ∈ V))
32adantr 479 . . . 4 ((⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ) → (𝐺 ∈ V ∧ 𝑆 ∈ V))
4 isnv.1 . . . . . . 7 𝑋 = ran 𝐺
52simpld 493 . . . . . . . 8 (⟨𝐺, 𝑆⟩ ∈ CVecOLD𝐺 ∈ V)
6 rnexg 7907 . . . . . . . 8 (𝐺 ∈ V → ran 𝐺 ∈ V)
75, 6syl 17 . . . . . . 7 (⟨𝐺, 𝑆⟩ ∈ CVecOLD → ran 𝐺 ∈ V)
84, 7eqeltrid 2829 . . . . . 6 (⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑋 ∈ V)
9 fex 7233 . . . . . 6 ((𝑁:𝑋⟶ℝ ∧ 𝑋 ∈ V) → 𝑁 ∈ V)
108, 9sylan2 591 . . . . 5 ((𝑁:𝑋⟶ℝ ∧ ⟨𝐺, 𝑆⟩ ∈ CVecOLD) → 𝑁 ∈ V)
1110ancoms 457 . . . 4 ((⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ) → 𝑁 ∈ V)
12 df-3an 1086 . . . 4 ((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V) ↔ ((𝐺 ∈ V ∧ 𝑆 ∈ V) ∧ 𝑁 ∈ V))
133, 11, 12sylanbrc 581 . . 3 ((⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ) → (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V))
14133adant3 1129 . 2 ((⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))) → (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V))
15 isnv.2 . . 3 𝑍 = (GId‘𝐺)
164, 15isnvlem 30437 . 2 ((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V) → (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec ↔ (⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))))
171, 14, 16pm5.21nii 377 1 (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec ↔ (⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3052  Vcvv 3463  cop 4628   class class class wbr 5141  ran crn 5672  wf 6538  cfv 6542  (class class class)co 7415  cc 11135  cr 11136  0cc0 11137   + caddc 11140   · cmul 11142  cle 11278  abscabs 15212  GIdcgi 30317  CVecOLDcvc 30385  NrmCVeccnv 30411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pr 5422  ax-un 7737
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2932  df-ral 3053  df-rex 3062  df-reu 3366  df-rab 3421  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4317  df-if 4523  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5569  df-xp 5677  df-rel 5678  df-cnv 5679  df-co 5680  df-dm 5681  df-rn 5682  df-res 5683  df-ima 5684  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7418  df-oprab 7419  df-vc 30386  df-nv 30419
This theorem is referenced by:  isnvi  30440  nvi  30441
  Copyright terms: Public domain W3C validator
OSZAR »