![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > kgencmp | Structured version Visualization version GIF version |
Description: The compact generator topology is the same as the original topology on compact subspaces. (Contributed by Mario Carneiro, 20-Mar-2015.) |
Ref | Expression |
---|---|
kgencmp | ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝐽 ↾t 𝐾) = ((𝑘Gen‘𝐽) ↾t 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kgenftop 23464 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑘Gen‘𝐽) ∈ Top) | |
2 | 1 | adantr 479 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝑘Gen‘𝐽) ∈ Top) |
3 | kgenss 23467 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽)) | |
4 | 3 | adantr 479 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → 𝐽 ⊆ (𝑘Gen‘𝐽)) |
5 | ssrest 23100 | . . 3 ⊢ (((𝑘Gen‘𝐽) ∈ Top ∧ 𝐽 ⊆ (𝑘Gen‘𝐽)) → (𝐽 ↾t 𝐾) ⊆ ((𝑘Gen‘𝐽) ↾t 𝐾)) | |
6 | 2, 4, 5 | syl2anc 582 | . 2 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝐽 ↾t 𝐾) ⊆ ((𝑘Gen‘𝐽) ↾t 𝐾)) |
7 | cmptop 23319 | . . . . . 6 ⊢ ((𝐽 ↾t 𝐾) ∈ Comp → (𝐽 ↾t 𝐾) ∈ Top) | |
8 | 7 | adantl 480 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝐽 ↾t 𝐾) ∈ Top) |
9 | restrcl 23081 | . . . . . 6 ⊢ ((𝐽 ↾t 𝐾) ∈ Top → (𝐽 ∈ V ∧ 𝐾 ∈ V)) | |
10 | 9 | simprd 494 | . . . . 5 ⊢ ((𝐽 ↾t 𝐾) ∈ Top → 𝐾 ∈ V) |
11 | 8, 10 | syl 17 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → 𝐾 ∈ V) |
12 | restval 17415 | . . . 4 ⊢ (((𝑘Gen‘𝐽) ∈ Top ∧ 𝐾 ∈ V) → ((𝑘Gen‘𝐽) ↾t 𝐾) = ran (𝑥 ∈ (𝑘Gen‘𝐽) ↦ (𝑥 ∩ 𝐾))) | |
13 | 2, 11, 12 | syl2anc 582 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → ((𝑘Gen‘𝐽) ↾t 𝐾) = ran (𝑥 ∈ (𝑘Gen‘𝐽) ↦ (𝑥 ∩ 𝐾))) |
14 | simpr 483 | . . . . . 6 ⊢ (((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → 𝑥 ∈ (𝑘Gen‘𝐽)) | |
15 | simplr 767 | . . . . . 6 ⊢ (((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → (𝐽 ↾t 𝐾) ∈ Comp) | |
16 | kgeni 23461 | . . . . . 6 ⊢ ((𝑥 ∈ (𝑘Gen‘𝐽) ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝑥 ∩ 𝐾) ∈ (𝐽 ↾t 𝐾)) | |
17 | 14, 15, 16 | syl2anc 582 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → (𝑥 ∩ 𝐾) ∈ (𝐽 ↾t 𝐾)) |
18 | 17 | fmpttd 7130 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝑥 ∈ (𝑘Gen‘𝐽) ↦ (𝑥 ∩ 𝐾)):(𝑘Gen‘𝐽)⟶(𝐽 ↾t 𝐾)) |
19 | 18 | frnd 6735 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → ran (𝑥 ∈ (𝑘Gen‘𝐽) ↦ (𝑥 ∩ 𝐾)) ⊆ (𝐽 ↾t 𝐾)) |
20 | 13, 19 | eqsstrd 4020 | . 2 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → ((𝑘Gen‘𝐽) ↾t 𝐾) ⊆ (𝐽 ↾t 𝐾)) |
21 | 6, 20 | eqssd 3999 | 1 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝐽 ↾t 𝐾) = ((𝑘Gen‘𝐽) ↾t 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3473 ∩ cin 3948 ⊆ wss 3949 ↦ cmpt 5235 ran crn 5683 ‘cfv 6553 (class class class)co 7426 ↾t crest 17409 Topctop 22815 Compccmp 23310 𝑘Genckgen 23457 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-en 8971 df-fin 8974 df-fi 9442 df-rest 17411 df-topgen 17432 df-top 22816 df-topon 22833 df-bases 22869 df-cmp 23311 df-kgen 23458 |
This theorem is referenced by: kgencmp2 23470 kgenidm 23471 |
Copyright terms: Public domain | W3C validator |