![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latjidm | Structured version Visualization version GIF version |
Description: Lattice join is idempotent. Analogue of unidm 4145. (Contributed by NM, 8-Oct-2011.) |
Ref | Expression |
---|---|
latjidm.b | ⊢ 𝐵 = (Base‘𝐾) |
latjidm.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
latjidm | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latjidm.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2725 | . 2 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | simpl 481 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ Lat) | |
4 | latjidm.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
5 | 1, 4 | latjcl 18430 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 𝑋) ∈ 𝐵) |
6 | 5 | 3anidm23 1418 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 𝑋) ∈ 𝐵) |
7 | simpr 483 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
8 | 1, 2 | latref 18432 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋(le‘𝐾)𝑋) |
9 | 1, 2, 4 | latjle12 18441 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑋(le‘𝐾)𝑋 ∧ 𝑋(le‘𝐾)𝑋) ↔ (𝑋 ∨ 𝑋)(le‘𝐾)𝑋)) |
10 | 3, 7, 7, 7, 9 | syl13anc 1369 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → ((𝑋(le‘𝐾)𝑋 ∧ 𝑋(le‘𝐾)𝑋) ↔ (𝑋 ∨ 𝑋)(le‘𝐾)𝑋)) |
11 | 8, 8, 10 | mpbi2and 710 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 𝑋)(le‘𝐾)𝑋) |
12 | 1, 2, 4 | latlej1 18439 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → 𝑋(le‘𝐾)(𝑋 ∨ 𝑋)) |
13 | 12 | 3anidm23 1418 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋(le‘𝐾)(𝑋 ∨ 𝑋)) |
14 | 1, 2, 3, 6, 7, 11, 13 | latasymd 18436 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 class class class wbr 5143 ‘cfv 6543 (class class class)co 7416 Basecbs 17179 lecple 17239 joincjn 18302 Latclat 18422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7372 df-ov 7419 df-oprab 7420 df-proset 18286 df-poset 18304 df-lub 18337 df-glb 18338 df-join 18339 df-meet 18340 df-lat 18423 |
This theorem is referenced by: lubsn 18473 latjjdi 18482 latjjdir 18483 cvlsupr2 38871 hlatjidm 38897 cvrat3 38971 snatpsubN 39279 dalawlem7 39406 cdleme11 39799 cdleme23b 39879 cdlemg33a 40235 trljco 40269 doca2N 40655 djajN 40666 |
Copyright terms: Public domain | W3C validator |