Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  latm4 Structured version   Visualization version   GIF version

Theorem latm4 38709
Description: Rearrangement of lattice meet of 4 classes. (in4 4226 analog.) (Contributed by NM, 8-Nov-2011.)
Hypotheses
Ref Expression
olmass.b 𝐵 = (Base‘𝐾)
olmass.m = (meet‘𝐾)
Assertion
Ref Expression
latm4 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 𝑌) (𝑍 𝑊)) = ((𝑋 𝑍) (𝑌 𝑊)))

Proof of Theorem latm4
StepHypRef Expression
1 simp1 1133 . . . 4 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝐾 ∈ OL)
2 simp2r 1197 . . . 4 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑌𝐵)
3 simp3l 1198 . . . 4 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑍𝐵)
4 simp3r 1199 . . . 4 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑊𝐵)
5 olmass.b . . . . 5 𝐵 = (Base‘𝐾)
6 olmass.m . . . . 5 = (meet‘𝐾)
75, 6latm12 38706 . . . 4 ((𝐾 ∈ OL ∧ (𝑌𝐵𝑍𝐵𝑊𝐵)) → (𝑌 (𝑍 𝑊)) = (𝑍 (𝑌 𝑊)))
81, 2, 3, 4, 7syl13anc 1369 . . 3 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑌 (𝑍 𝑊)) = (𝑍 (𝑌 𝑊)))
98oveq2d 7440 . 2 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑋 (𝑌 (𝑍 𝑊))) = (𝑋 (𝑍 (𝑌 𝑊))))
10 simp2l 1196 . . 3 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑋𝐵)
11 ollat 38689 . . . . 5 (𝐾 ∈ OL → 𝐾 ∈ Lat)
12113ad2ant1 1130 . . . 4 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝐾 ∈ Lat)
135, 6latmcl 18437 . . . 4 ((𝐾 ∈ Lat ∧ 𝑍𝐵𝑊𝐵) → (𝑍 𝑊) ∈ 𝐵)
1412, 3, 4, 13syl3anc 1368 . . 3 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑍 𝑊) ∈ 𝐵)
155, 6latmassOLD 38705 . . 3 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑍 𝑊) ∈ 𝐵)) → ((𝑋 𝑌) (𝑍 𝑊)) = (𝑋 (𝑌 (𝑍 𝑊))))
161, 10, 2, 14, 15syl13anc 1369 . 2 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 𝑌) (𝑍 𝑊)) = (𝑋 (𝑌 (𝑍 𝑊))))
175, 6latmcl 18437 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑊𝐵) → (𝑌 𝑊) ∈ 𝐵)
1812, 2, 4, 17syl3anc 1368 . . 3 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑌 𝑊) ∈ 𝐵)
195, 6latmassOLD 38705 . . 3 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑍𝐵 ∧ (𝑌 𝑊) ∈ 𝐵)) → ((𝑋 𝑍) (𝑌 𝑊)) = (𝑋 (𝑍 (𝑌 𝑊))))
201, 10, 3, 18, 19syl13anc 1369 . 2 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 𝑍) (𝑌 𝑊)) = (𝑋 (𝑍 (𝑌 𝑊))))
219, 16, 203eqtr4d 2777 1 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 𝑌) (𝑍 𝑊)) = ((𝑋 𝑍) (𝑌 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  cfv 6551  (class class class)co 7424  Basecbs 17185  meetcmee 18309  Latclat 18428  OLcol 38650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-proset 18292  df-poset 18310  df-lub 18343  df-glb 18344  df-join 18345  df-meet 18346  df-lat 18429  df-oposet 38652  df-ol 38654
This theorem is referenced by:  latmmdiN  38710  latmmdir  38711
  Copyright terms: Public domain W3C validator
OSZAR »