![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latmlej21 | Structured version Visualization version GIF version |
Description: Ordering of a meet and join with a common variable. (Contributed by NM, 4-Oct-2012.) |
Ref | Expression |
---|---|
latledi.b | ⊢ 𝐵 = (Base‘𝐾) |
latledi.l | ⊢ ≤ = (le‘𝐾) |
latledi.j | ⊢ ∨ = (join‘𝐾) |
latledi.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
latmlej21 | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 ∧ 𝑋) ≤ (𝑋 ∨ 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latledi.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latledi.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
3 | 1, 2 | latmcom 18462 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) |
4 | 3 | 3adant3r3 1181 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) |
5 | latledi.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
6 | latledi.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
7 | 1, 5, 6, 2 | latmlej11 18477 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∧ 𝑌) ≤ (𝑋 ∨ 𝑍)) |
8 | 4, 7 | eqbrtrrd 5176 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 ∧ 𝑋) ≤ (𝑋 ∨ 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 class class class wbr 5152 ‘cfv 6553 (class class class)co 7426 Basecbs 17187 lecple 17247 joincjn 18310 meetcmee 18311 Latclat 18430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-poset 18312 df-lub 18345 df-glb 18346 df-join 18347 df-meet 18348 df-lat 18431 |
This theorem is referenced by: dalawlem3 39378 dalawlem6 39381 |
Copyright terms: Public domain | W3C validator |