![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcdval2 | Structured version Visualization version GIF version |
Description: Dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.) |
Ref | Expression |
---|---|
lcdval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcdval.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcdval.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
lcdval.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcdval.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lcdval.l | ⊢ 𝐿 = (LKer‘𝑈) |
lcdval.d | ⊢ 𝐷 = (LDual‘𝑈) |
lcdval.k | ⊢ (𝜑 → (𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻)) |
lcdval2.b | ⊢ 𝐵 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
Ref | Expression |
---|---|
lcdval2 | ⊢ (𝜑 → 𝐶 = (𝐷 ↾s 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcdval.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | lcdval.o | . . 3 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
3 | lcdval.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
4 | lcdval.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
5 | lcdval.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑈) | |
6 | lcdval.l | . . 3 ⊢ 𝐿 = (LKer‘𝑈) | |
7 | lcdval.d | . . 3 ⊢ 𝐷 = (LDual‘𝑈) | |
8 | lcdval.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻)) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | lcdval 41173 | . 2 ⊢ (𝜑 → 𝐶 = (𝐷 ↾s {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)})) |
10 | lcdval2.b | . . 3 ⊢ 𝐵 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
11 | 10 | oveq2i 7429 | . 2 ⊢ (𝐷 ↾s 𝐵) = (𝐷 ↾s {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)}) |
12 | 9, 11 | eqtr4di 2783 | 1 ⊢ (𝜑 → 𝐶 = (𝐷 ↾s 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {crab 3418 ‘cfv 6548 (class class class)co 7418 ↾s cress 17210 LFnlclfn 38640 LKerclk 38668 LDualcld 38706 LHypclh 39568 DVecHcdvh 40662 ocHcoch 40931 LCDualclcd 41170 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7421 df-lcdual 41171 |
This theorem is referenced by: lcdvbase 41177 lcdlss 41203 |
Copyright terms: Public domain | W3C validator |