![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > llnnlt | Structured version Visualization version GIF version |
Description: Two lattice lines cannot satisfy the less than relation. (Contributed by NM, 26-Jun-2012.) |
Ref | Expression |
---|---|
llnnlt.s | ⊢ < = (lt‘𝐾) |
llnnlt.n | ⊢ 𝑁 = (LLines‘𝐾) |
Ref | Expression |
---|---|
llnnlt | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) → ¬ 𝑋 < 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | llnnlt.s | . . . . 5 ⊢ < = (lt‘𝐾) | |
2 | 1 | pltirr 18320 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) → ¬ 𝑋 < 𝑋) |
3 | 2 | 3adant3 1130 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) → ¬ 𝑋 < 𝑋) |
4 | breq2 5146 | . . . 4 ⊢ (𝑋 = 𝑌 → (𝑋 < 𝑋 ↔ 𝑋 < 𝑌)) | |
5 | 4 | notbid 318 | . . 3 ⊢ (𝑋 = 𝑌 → (¬ 𝑋 < 𝑋 ↔ ¬ 𝑋 < 𝑌)) |
6 | 3, 5 | syl5ibcom 244 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) → (𝑋 = 𝑌 → ¬ 𝑋 < 𝑌)) |
7 | eqid 2728 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
8 | 7, 1 | pltle 18318 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) → (𝑋 < 𝑌 → 𝑋(le‘𝐾)𝑌)) |
9 | llnnlt.n | . . . . 5 ⊢ 𝑁 = (LLines‘𝐾) | |
10 | 7, 9 | llncmp 38989 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) → (𝑋(le‘𝐾)𝑌 ↔ 𝑋 = 𝑌)) |
11 | 8, 10 | sylibd 238 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) → (𝑋 < 𝑌 → 𝑋 = 𝑌)) |
12 | 11 | necon3ad 2949 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) → (𝑋 ≠ 𝑌 → ¬ 𝑋 < 𝑌)) |
13 | 6, 12 | pm2.61dne 3024 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) → ¬ 𝑋 < 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 class class class wbr 5142 ‘cfv 6542 lecple 17233 ltcplt 18293 HLchlt 38816 LLinesclln 38958 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-proset 18280 df-poset 18298 df-plt 18315 df-lub 18331 df-glb 18332 df-join 18333 df-meet 18334 df-p0 18410 df-lat 18417 df-clat 18484 df-oposet 38642 df-ol 38644 df-oml 38645 df-covers 38732 df-ats 38733 df-atl 38764 df-cvlat 38788 df-hlat 38817 df-llines 38965 |
This theorem is referenced by: lplnnle2at 39008 |
Copyright terms: Public domain | W3C validator |