Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnnlt Structured version   Visualization version   GIF version

Theorem llnnlt 38990
Description: Two lattice lines cannot satisfy the less than relation. (Contributed by NM, 26-Jun-2012.)
Hypotheses
Ref Expression
llnnlt.s < = (lt‘𝐾)
llnnlt.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
llnnlt ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → ¬ 𝑋 < 𝑌)

Proof of Theorem llnnlt
StepHypRef Expression
1 llnnlt.s . . . . 5 < = (lt‘𝐾)
21pltirr 18320 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑁) → ¬ 𝑋 < 𝑋)
323adant3 1130 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → ¬ 𝑋 < 𝑋)
4 breq2 5146 . . . 4 (𝑋 = 𝑌 → (𝑋 < 𝑋𝑋 < 𝑌))
54notbid 318 . . 3 (𝑋 = 𝑌 → (¬ 𝑋 < 𝑋 ↔ ¬ 𝑋 < 𝑌))
63, 5syl5ibcom 244 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝑋 = 𝑌 → ¬ 𝑋 < 𝑌))
7 eqid 2728 . . . . 5 (le‘𝐾) = (le‘𝐾)
87, 1pltle 18318 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝑋 < 𝑌𝑋(le‘𝐾)𝑌))
9 llnnlt.n . . . . 5 𝑁 = (LLines‘𝐾)
107, 9llncmp 38989 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝑋(le‘𝐾)𝑌𝑋 = 𝑌))
118, 10sylibd 238 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝑋 < 𝑌𝑋 = 𝑌))
1211necon3ad 2949 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝑋𝑌 → ¬ 𝑋 < 𝑌))
136, 12pm2.61dne 3024 1 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → ¬ 𝑋 < 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1085   = wceq 1534  wcel 2099   class class class wbr 5142  cfv 6542  lecple 17233  ltcplt 18293  HLchlt 38816  LLinesclln 38958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-proset 18280  df-poset 18298  df-plt 18315  df-lub 18331  df-glb 18332  df-join 18333  df-meet 18334  df-p0 18410  df-lat 18417  df-clat 18484  df-oposet 38642  df-ol 38644  df-oml 38645  df-covers 38732  df-ats 38733  df-atl 38764  df-cvlat 38788  df-hlat 38817  df-llines 38965
This theorem is referenced by:  lplnnle2at  39008
  Copyright terms: Public domain W3C validator
OSZAR »