![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmimco | Structured version Visualization version GIF version |
Description: The composition of two isomorphisms of modules is an isomorphism of modules. (Contributed by AV, 10-Mar-2019.) |
Ref | Expression |
---|---|
lmimco | ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐺 ∈ (𝑅 LMIso 𝑆)) → (𝐹 ∘ 𝐺) ∈ (𝑅 LMIso 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
2 | eqid 2728 | . . 3 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
3 | 1, 2 | islmim 20940 | . 2 ⊢ (𝐹 ∈ (𝑆 LMIso 𝑇) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇))) |
4 | eqid 2728 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
5 | 4, 1 | islmim 20940 | . 2 ⊢ (𝐺 ∈ (𝑅 LMIso 𝑆) ↔ (𝐺 ∈ (𝑅 LMHom 𝑆) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆))) |
6 | lmhmco 20921 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑅 LMHom 𝑆)) → (𝐹 ∘ 𝐺) ∈ (𝑅 LMHom 𝑇)) | |
7 | 6 | ad2ant2r 746 | . . 3 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)) ∧ (𝐺 ∈ (𝑅 LMHom 𝑆) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆))) → (𝐹 ∘ 𝐺) ∈ (𝑅 LMHom 𝑇)) |
8 | f1oco 6856 | . . . 4 ⊢ ((𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆)) → (𝐹 ∘ 𝐺):(Base‘𝑅)–1-1-onto→(Base‘𝑇)) | |
9 | 8 | ad2ant2l 745 | . . 3 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)) ∧ (𝐺 ∈ (𝑅 LMHom 𝑆) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆))) → (𝐹 ∘ 𝐺):(Base‘𝑅)–1-1-onto→(Base‘𝑇)) |
10 | 4, 2 | islmim 20940 | . . 3 ⊢ ((𝐹 ∘ 𝐺) ∈ (𝑅 LMIso 𝑇) ↔ ((𝐹 ∘ 𝐺) ∈ (𝑅 LMHom 𝑇) ∧ (𝐹 ∘ 𝐺):(Base‘𝑅)–1-1-onto→(Base‘𝑇))) |
11 | 7, 9, 10 | sylanbrc 582 | . 2 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)) ∧ (𝐺 ∈ (𝑅 LMHom 𝑆) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆))) → (𝐹 ∘ 𝐺) ∈ (𝑅 LMIso 𝑇)) |
12 | 3, 5, 11 | syl2anb 597 | 1 ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐺 ∈ (𝑅 LMIso 𝑆)) → (𝐹 ∘ 𝐺) ∈ (𝑅 LMIso 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 ∘ ccom 5676 –1-1-onto→wf1o 6541 ‘cfv 6542 (class class class)co 7414 Basecbs 17173 LMHom clmhm 20897 LMIso clmim 20898 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-map 8840 df-0g 17416 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-mhm 18733 df-grp 18886 df-ghm 19161 df-lmod 20738 df-lmhm 20900 df-lmim 20901 |
This theorem is referenced by: lmictra 21772 |
Copyright terms: Public domain | W3C validator |