![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lnof | Structured version Visualization version GIF version |
Description: A linear operator is a mapping. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 18-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnof.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
lnof.2 | ⊢ 𝑌 = (BaseSet‘𝑊) |
lnof.7 | ⊢ 𝐿 = (𝑈 LnOp 𝑊) |
Ref | Expression |
---|---|
lnof | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑇:𝑋⟶𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnof.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | lnof.2 | . . . 4 ⊢ 𝑌 = (BaseSet‘𝑊) | |
3 | eqid 2728 | . . . 4 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
4 | eqid 2728 | . . . 4 ⊢ ( +𝑣 ‘𝑊) = ( +𝑣 ‘𝑊) | |
5 | eqid 2728 | . . . 4 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
6 | eqid 2728 | . . . 4 ⊢ ( ·𝑠OLD ‘𝑊) = ( ·𝑠OLD ‘𝑊) | |
7 | lnof.7 | . . . 4 ⊢ 𝐿 = (𝑈 LnOp 𝑊) | |
8 | 1, 2, 3, 4, 5, 6, 7 | islno 30576 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇 ∈ 𝐿 ↔ (𝑇:𝑋⟶𝑌 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑇‘((𝑥( ·𝑠OLD ‘𝑈)𝑦)( +𝑣 ‘𝑈)𝑧)) = ((𝑥( ·𝑠OLD ‘𝑊)(𝑇‘𝑦))( +𝑣 ‘𝑊)(𝑇‘𝑧))))) |
9 | 8 | simprbda 498 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑇 ∈ 𝐿) → 𝑇:𝑋⟶𝑌) |
10 | 9 | 3impa 1108 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑇:𝑋⟶𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ∀wral 3058 ⟶wf 6544 ‘cfv 6548 (class class class)co 7420 ℂcc 11137 NrmCVeccnv 30407 +𝑣 cpv 30408 BaseSetcba 30409 ·𝑠OLD cns 30410 LnOp clno 30563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-map 8847 df-lno 30567 |
This theorem is referenced by: lno0 30579 lnocoi 30580 lnoadd 30581 lnosub 30582 lnomul 30583 isblo2 30606 blof 30608 nmlno0lem 30616 nmlnoubi 30619 nmlnogt0 30620 lnon0 30621 isblo3i 30624 blocnilem 30627 blocni 30628 htthlem 30740 |
Copyright terms: Public domain | W3C validator |