![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lplnllnneN | Structured version Visualization version GIF version |
Description: Two lattice lines defined by atoms defining a lattice plane are not equal. (Contributed by NM, 9-Oct-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lplnri1.j | ⊢ ∨ = (join‘𝐾) |
lplnri1.a | ⊢ 𝐴 = (Atoms‘𝐾) |
lplnri1.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
lplnri1.y | ⊢ 𝑌 = ((𝑄 ∨ 𝑅) ∨ 𝑆) |
Ref | Expression |
---|---|
lplnllnneN | ⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑌 ∈ 𝑃) → (𝑄 ∨ 𝑆) ≠ (𝑅 ∨ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
2 | lplnri1.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
3 | lplnri1.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | lplnri1.p | . . 3 ⊢ 𝑃 = (LPlanes‘𝐾) | |
5 | lplnri1.y | . . 3 ⊢ 𝑌 = ((𝑄 ∨ 𝑅) ∨ 𝑆) | |
6 | 1, 2, 3, 4, 5 | lplnriaN 39134 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑌 ∈ 𝑃) → ¬ 𝑄(le‘𝐾)(𝑅 ∨ 𝑆)) |
7 | simpl1 1188 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑌 ∈ 𝑃) ∧ (𝑄 ∨ 𝑆) = (𝑅 ∨ 𝑆)) → 𝐾 ∈ HL) | |
8 | simpl21 1248 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑌 ∈ 𝑃) ∧ (𝑄 ∨ 𝑆) = (𝑅 ∨ 𝑆)) → 𝑄 ∈ 𝐴) | |
9 | simpl23 1250 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑌 ∈ 𝑃) ∧ (𝑄 ∨ 𝑆) = (𝑅 ∨ 𝑆)) → 𝑆 ∈ 𝐴) | |
10 | 1, 2, 3 | hlatlej1 38958 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → 𝑄(le‘𝐾)(𝑄 ∨ 𝑆)) |
11 | 7, 8, 9, 10 | syl3anc 1368 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑌 ∈ 𝑃) ∧ (𝑄 ∨ 𝑆) = (𝑅 ∨ 𝑆)) → 𝑄(le‘𝐾)(𝑄 ∨ 𝑆)) |
12 | simpr 483 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑌 ∈ 𝑃) ∧ (𝑄 ∨ 𝑆) = (𝑅 ∨ 𝑆)) → (𝑄 ∨ 𝑆) = (𝑅 ∨ 𝑆)) | |
13 | 11, 12 | breqtrd 5175 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑌 ∈ 𝑃) ∧ (𝑄 ∨ 𝑆) = (𝑅 ∨ 𝑆)) → 𝑄(le‘𝐾)(𝑅 ∨ 𝑆)) |
14 | 13 | ex 411 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑌 ∈ 𝑃) → ((𝑄 ∨ 𝑆) = (𝑅 ∨ 𝑆) → 𝑄(le‘𝐾)(𝑅 ∨ 𝑆))) |
15 | 14 | necon3bd 2943 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑌 ∈ 𝑃) → (¬ 𝑄(le‘𝐾)(𝑅 ∨ 𝑆) → (𝑄 ∨ 𝑆) ≠ (𝑅 ∨ 𝑆))) |
16 | 6, 15 | mpd 15 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑌 ∈ 𝑃) → (𝑄 ∨ 𝑆) ≠ (𝑅 ∨ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 class class class wbr 5149 ‘cfv 6548 (class class class)co 7418 lecple 17241 joincjn 18304 Atomscatm 38846 HLchlt 38933 LPlanesclpl 39076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7374 df-ov 7421 df-oprab 7422 df-proset 18288 df-poset 18306 df-plt 18323 df-lub 18339 df-glb 18340 df-join 18341 df-meet 18342 df-p0 18418 df-lat 18425 df-clat 18492 df-oposet 38759 df-ol 38761 df-oml 38762 df-covers 38849 df-ats 38850 df-atl 38881 df-cvlat 38905 df-hlat 38934 df-llines 39082 df-lplanes 39083 |
This theorem is referenced by: cdleme16aN 39843 |
Copyright terms: Public domain | W3C validator |