MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lttri2 Structured version   Visualization version   GIF version

Theorem lttri2 11327
Description: Consequence of trichotomy. (Contributed by NM, 9-Oct-1999.)
Assertion
Ref Expression
lttri2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))

Proof of Theorem lttri2
StepHypRef Expression
1 ltso 11325 . . . 4 < Or ℝ
2 sotrieq 5619 . . . 4 (( < Or ℝ ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐴 = 𝐵 ↔ ¬ (𝐴 < 𝐵𝐵 < 𝐴)))
31, 2mpan 689 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ ¬ (𝐴 < 𝐵𝐵 < 𝐴)))
43bicomd 222 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ (𝐴 < 𝐵𝐵 < 𝐴) ↔ 𝐴 = 𝐵))
54necon1abid 2976 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 846   = wceq 1534  wcel 2099  wne 2937   class class class wbr 5148   Or wor 5589  cr 11138   < clt 11279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-resscn 11196  ax-pre-lttri 11213  ax-pre-lttrn 11214
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-ltxr 11284
This theorem is referenced by:  ne0gt0  11350  lttri2i  11359  lttri2d  11384  cshwshashlem3  17067  gsummoncoe1  22227  mp2pm2mplem4  22724  chfacfscmulgsum  22775  chfacfpmmulgsum  22779  dvne0  25957  relogbf  26736  atanlogsub  26861  nn0prpw  35807  itg2addnclem2  37145  12gcd5e1  41474  hashscontpow  41593  sticksstones1  41618  sticksstones2  41619  nerabdioph  42229  rpnnen3  42453  fmul01lt1lem1  44972
  Copyright terms: Public domain W3C validator
OSZAR »