Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapco2g Structured version   Visualization version   GIF version

Theorem mapco2g 42125
Description: Renaming indices in a tuple, with sethood as antecedents. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Mario Carneiro, 5-May-2015.)
Assertion
Ref Expression
mapco2g ((𝐸 ∈ V ∧ 𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷:𝐸𝐶) → (𝐴𝐷) ∈ (𝐵m 𝐸))

Proof of Theorem mapco2g
StepHypRef Expression
1 elmapi 8862 . . . 4 (𝐴 ∈ (𝐵m 𝐶) → 𝐴:𝐶𝐵)
2 fco 6742 . . . 4 ((𝐴:𝐶𝐵𝐷:𝐸𝐶) → (𝐴𝐷):𝐸𝐵)
31, 2sylan 579 . . 3 ((𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷:𝐸𝐶) → (𝐴𝐷):𝐸𝐵)
433adant1 1128 . 2 ((𝐸 ∈ V ∧ 𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷:𝐸𝐶) → (𝐴𝐷):𝐸𝐵)
5 n0i 4330 . . . . 5 (𝐴 ∈ (𝐵m 𝐶) → ¬ (𝐵m 𝐶) = ∅)
6 reldmmap 8848 . . . . . 6 Rel dom ↑m
76ovprc1 7454 . . . . 5 𝐵 ∈ V → (𝐵m 𝐶) = ∅)
85, 7nsyl2 141 . . . 4 (𝐴 ∈ (𝐵m 𝐶) → 𝐵 ∈ V)
983ad2ant2 1132 . . 3 ((𝐸 ∈ V ∧ 𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷:𝐸𝐶) → 𝐵 ∈ V)
10 simp1 1134 . . 3 ((𝐸 ∈ V ∧ 𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷:𝐸𝐶) → 𝐸 ∈ V)
119, 10elmapd 8853 . 2 ((𝐸 ∈ V ∧ 𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷:𝐸𝐶) → ((𝐴𝐷) ∈ (𝐵m 𝐸) ↔ (𝐴𝐷):𝐸𝐵))
124, 11mpbird 257 1 ((𝐸 ∈ V ∧ 𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷:𝐸𝐶) → (𝐴𝐷) ∈ (𝐵m 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1534  wcel 2099  Vcvv 3470  c0 4319  ccom 5677  wf 6539  (class class class)co 7415  m cmap 8839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7418  df-oprab 7419  df-mpo 7420  df-1st 7988  df-2nd 7989  df-map 8841
This theorem is referenced by:  mapco2  42126  eldioph2  42173
  Copyright terms: Public domain W3C validator
OSZAR »