MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapsnend Structured version   Visualization version   GIF version

Theorem mapsnend 9055
Description: Set exponentiation to a singleton exponent is equinumerous to its base. Exercise 4.43 of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.) (Revised by Mario Carneiro, 15-Nov-2014.) (Revised by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
mapsnend.a (𝜑𝐴𝑉)
mapsnend.b (𝜑𝐵𝑊)
Assertion
Ref Expression
mapsnend (𝜑 → (𝐴m {𝐵}) ≈ 𝐴)

Proof of Theorem mapsnend
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovexd 7450 . 2 (𝜑 → (𝐴m {𝐵}) ∈ V)
2 mapsnend.a . 2 (𝜑𝐴𝑉)
3 fvexd 6907 . . 3 (𝑧 ∈ (𝐴m {𝐵}) → (𝑧𝐵) ∈ V)
43a1i 11 . 2 (𝜑 → (𝑧 ∈ (𝐴m {𝐵}) → (𝑧𝐵) ∈ V))
5 snex 5428 . . 3 {⟨𝐵, 𝑤⟩} ∈ V
652a1i 12 . 2 (𝜑 → (𝑤𝐴 → {⟨𝐵, 𝑤⟩} ∈ V))
7 mapsnend.b . . . . . . 7 (𝜑𝐵𝑊)
82, 7mapsnd 8899 . . . . . 6 (𝜑 → (𝐴m {𝐵}) = {𝑧 ∣ ∃𝑦𝐴 𝑧 = {⟨𝐵, 𝑦⟩}})
98eqabrd 2872 . . . . 5 (𝜑 → (𝑧 ∈ (𝐴m {𝐵}) ↔ ∃𝑦𝐴 𝑧 = {⟨𝐵, 𝑦⟩}))
109anbi1d 630 . . . 4 (𝜑 → ((𝑧 ∈ (𝐴m {𝐵}) ∧ 𝑤 = (𝑧𝐵)) ↔ (∃𝑦𝐴 𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵))))
11 r19.41v 3184 . . . . . 6 (∃𝑦𝐴 (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵)) ↔ (∃𝑦𝐴 𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵)))
1211bicomi 223 . . . . 5 ((∃𝑦𝐴 𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵)) ↔ ∃𝑦𝐴 (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵)))
1312a1i 11 . . . 4 (𝜑 → ((∃𝑦𝐴 𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵)) ↔ ∃𝑦𝐴 (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵))))
14 df-rex 3067 . . . . 5 (∃𝑦𝐴 (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵)) ↔ ∃𝑦(𝑦𝐴 ∧ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵))))
1514a1i 11 . . . 4 (𝜑 → (∃𝑦𝐴 (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵)) ↔ ∃𝑦(𝑦𝐴 ∧ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵)))))
1610, 13, 153bitrd 305 . . 3 (𝜑 → ((𝑧 ∈ (𝐴m {𝐵}) ∧ 𝑤 = (𝑧𝐵)) ↔ ∃𝑦(𝑦𝐴 ∧ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵)))))
17 fveq1 6891 . . . . . . . . . 10 (𝑧 = {⟨𝐵, 𝑦⟩} → (𝑧𝐵) = ({⟨𝐵, 𝑦⟩}‘𝐵))
18 vex 3474 . . . . . . . . . . 11 𝑦 ∈ V
19 fvsng 7184 . . . . . . . . . . 11 ((𝐵𝑊𝑦 ∈ V) → ({⟨𝐵, 𝑦⟩}‘𝐵) = 𝑦)
207, 18, 19sylancl 585 . . . . . . . . . 10 (𝜑 → ({⟨𝐵, 𝑦⟩}‘𝐵) = 𝑦)
2117, 20sylan9eqr 2790 . . . . . . . . 9 ((𝜑𝑧 = {⟨𝐵, 𝑦⟩}) → (𝑧𝐵) = 𝑦)
2221eqeq2d 2739 . . . . . . . 8 ((𝜑𝑧 = {⟨𝐵, 𝑦⟩}) → (𝑤 = (𝑧𝐵) ↔ 𝑤 = 𝑦))
23 equcom 2014 . . . . . . . 8 (𝑤 = 𝑦𝑦 = 𝑤)
2422, 23bitrdi 287 . . . . . . 7 ((𝜑𝑧 = {⟨𝐵, 𝑦⟩}) → (𝑤 = (𝑧𝐵) ↔ 𝑦 = 𝑤))
2524pm5.32da 578 . . . . . 6 (𝜑 → ((𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵)) ↔ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑦 = 𝑤)))
2625anbi2d 629 . . . . 5 (𝜑 → ((𝑦𝐴 ∧ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵))) ↔ (𝑦𝐴 ∧ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑦 = 𝑤))))
27 anass 468 . . . . . 6 (((𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩}) ∧ 𝑦 = 𝑤) ↔ (𝑦𝐴 ∧ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑦 = 𝑤)))
2827a1i 11 . . . . 5 (𝜑 → (((𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩}) ∧ 𝑦 = 𝑤) ↔ (𝑦𝐴 ∧ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑦 = 𝑤))))
29 ancom 460 . . . . . 6 (((𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩}) ∧ 𝑦 = 𝑤) ↔ (𝑦 = 𝑤 ∧ (𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩})))
3029a1i 11 . . . . 5 (𝜑 → (((𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩}) ∧ 𝑦 = 𝑤) ↔ (𝑦 = 𝑤 ∧ (𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩}))))
3126, 28, 303bitr2d 307 . . . 4 (𝜑 → ((𝑦𝐴 ∧ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵))) ↔ (𝑦 = 𝑤 ∧ (𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩}))))
3231exbidv 1917 . . 3 (𝜑 → (∃𝑦(𝑦𝐴 ∧ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵))) ↔ ∃𝑦(𝑦 = 𝑤 ∧ (𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩}))))
33 eleq1w 2812 . . . . . 6 (𝑦 = 𝑤 → (𝑦𝐴𝑤𝐴))
34 opeq2 4871 . . . . . . . 8 (𝑦 = 𝑤 → ⟨𝐵, 𝑦⟩ = ⟨𝐵, 𝑤⟩)
3534sneqd 4637 . . . . . . 7 (𝑦 = 𝑤 → {⟨𝐵, 𝑦⟩} = {⟨𝐵, 𝑤⟩})
3635eqeq2d 2739 . . . . . 6 (𝑦 = 𝑤 → (𝑧 = {⟨𝐵, 𝑦⟩} ↔ 𝑧 = {⟨𝐵, 𝑤⟩}))
3733, 36anbi12d 631 . . . . 5 (𝑦 = 𝑤 → ((𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩}) ↔ (𝑤𝐴𝑧 = {⟨𝐵, 𝑤⟩})))
3837equsexvw 2001 . . . 4 (∃𝑦(𝑦 = 𝑤 ∧ (𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩})) ↔ (𝑤𝐴𝑧 = {⟨𝐵, 𝑤⟩}))
3938a1i 11 . . 3 (𝜑 → (∃𝑦(𝑦 = 𝑤 ∧ (𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩})) ↔ (𝑤𝐴𝑧 = {⟨𝐵, 𝑤⟩})))
4016, 32, 393bitrd 305 . 2 (𝜑 → ((𝑧 ∈ (𝐴m {𝐵}) ∧ 𝑤 = (𝑧𝐵)) ↔ (𝑤𝐴𝑧 = {⟨𝐵, 𝑤⟩})))
411, 2, 4, 6, 40en2d 9003 1 (𝜑 → (𝐴m {𝐵}) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wex 1774  wcel 2099  wrex 3066  Vcvv 3470  {csn 4625  cop 4631   class class class wbr 5143  cfv 6543  (class class class)co 7415  m cmap 8839  cen 8955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7418  df-oprab 7419  df-mpo 7420  df-map 8841  df-en 8959
This theorem is referenced by:  mapsnen  9056  map2xp  9166  mapdom3  9168  ackbij1lem5  10242  pwxpndom2  10683  hashmap  14421  mpct  44565
  Copyright terms: Public domain W3C validator
OSZAR »