![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > marrepval | Structured version Visualization version GIF version |
Description: Third substitution for the definition of the matrix row replacement function. (Contributed by AV, 12-Feb-2019.) |
Ref | Expression |
---|---|
marrepfval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
marrepfval.b | ⊢ 𝐵 = (Base‘𝐴) |
marrepfval.q | ⊢ 𝑄 = (𝑁 matRRep 𝑅) |
marrepfval.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
marrepval | ⊢ (((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → (𝐾(𝑀𝑄𝑆)𝐿) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, 0 ), (𝑖𝑀𝑗)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | marrepfval.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | marrepfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
3 | marrepfval.q | . . . 4 ⊢ 𝑄 = (𝑁 matRRep 𝑅) | |
4 | marrepfval.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
5 | 1, 2, 3, 4 | marrepval0 22476 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) → (𝑀𝑄𝑆) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗))))) |
6 | 5 | adantr 480 | . 2 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → (𝑀𝑄𝑆) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗))))) |
7 | simprl 770 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → 𝐾 ∈ 𝑁) | |
8 | simplrr 777 | . . 3 ⊢ ((((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) ∧ 𝑘 = 𝐾) → 𝐿 ∈ 𝑁) | |
9 | 1, 2 | matrcl 22325 | . . . . . . 7 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
10 | 9 | simpld 494 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
11 | 10, 10 | jca 511 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin)) |
12 | 11 | ad3antrrr 729 | . . . 4 ⊢ ((((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) ∧ (𝑘 = 𝐾 ∧ 𝑙 = 𝐿)) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin)) |
13 | mpoexga 8082 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗))) ∈ V) | |
14 | 12, 13 | syl 17 | . . 3 ⊢ ((((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) ∧ (𝑘 = 𝐾 ∧ 𝑙 = 𝐿)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗))) ∈ V) |
15 | eqeq2 2740 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (𝑖 = 𝑘 ↔ 𝑖 = 𝐾)) | |
16 | 15 | adantr 480 | . . . . . 6 ⊢ ((𝑘 = 𝐾 ∧ 𝑙 = 𝐿) → (𝑖 = 𝑘 ↔ 𝑖 = 𝐾)) |
17 | eqeq2 2740 | . . . . . . . 8 ⊢ (𝑙 = 𝐿 → (𝑗 = 𝑙 ↔ 𝑗 = 𝐿)) | |
18 | 17 | ifbid 4552 | . . . . . . 7 ⊢ (𝑙 = 𝐿 → if(𝑗 = 𝑙, 𝑆, 0 ) = if(𝑗 = 𝐿, 𝑆, 0 )) |
19 | 18 | adantl 481 | . . . . . 6 ⊢ ((𝑘 = 𝐾 ∧ 𝑙 = 𝐿) → if(𝑗 = 𝑙, 𝑆, 0 ) = if(𝑗 = 𝐿, 𝑆, 0 )) |
20 | 16, 19 | ifbieq1d 4553 | . . . . 5 ⊢ ((𝑘 = 𝐾 ∧ 𝑙 = 𝐿) → if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗)) = if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, 0 ), (𝑖𝑀𝑗))) |
21 | 20 | mpoeq3dv 7499 | . . . 4 ⊢ ((𝑘 = 𝐾 ∧ 𝑙 = 𝐿) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, 0 ), (𝑖𝑀𝑗)))) |
22 | 21 | adantl 481 | . . 3 ⊢ ((((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) ∧ (𝑘 = 𝐾 ∧ 𝑙 = 𝐿)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, 0 ), (𝑖𝑀𝑗)))) |
23 | 7, 8, 14, 22 | ovmpodv2 7579 | . 2 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → ((𝑀𝑄𝑆) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗)))) → (𝐾(𝑀𝑄𝑆)𝐿) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, 0 ), (𝑖𝑀𝑗))))) |
24 | 6, 23 | mpd 15 | 1 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → (𝐾(𝑀𝑄𝑆)𝐿) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, 0 ), (𝑖𝑀𝑗)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3471 ifcif 4529 ‘cfv 6548 (class class class)co 7420 ∈ cmpo 7422 Fincfn 8964 Basecbs 17180 0gc0g 17421 Mat cmat 22320 matRRep cmarrep 22471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-1cn 11197 ax-addcl 11199 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-nn 12244 df-slot 17151 df-ndx 17163 df-base 17181 df-mat 22321 df-marrep 22473 |
This theorem is referenced by: marrepeval 22478 marrepcl 22479 1marepvmarrepid 22490 smadiadetglem1 22586 smadiadetglem2 22587 madjusmdetlem1 33428 |
Copyright terms: Public domain | W3C validator |