Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndpsuppss Structured version   Visualization version   GIF version

Theorem mndpsuppss 47486
Description: The support of a mapping of a scalar multiplication with a function of scalars is a subset of the support of the function of scalars. (Contributed by AV, 5-Apr-2019.)
Hypothesis
Ref Expression
mndpsuppss.r 𝑅 = (Base‘𝑀)
Assertion
Ref Expression
mndpsuppss (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → ((𝐴f (+g𝑀)𝐵) supp (0g𝑀)) ⊆ ((𝐴 supp (0g𝑀)) ∪ (𝐵 supp (0g𝑀))))

Proof of Theorem mndpsuppss
Dummy variables 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioran 981 . . . . . 6 (¬ ((𝐴𝑥) ≠ (0g𝑀) ∨ (𝐵𝑥) ≠ (0g𝑀)) ↔ (¬ (𝐴𝑥) ≠ (0g𝑀) ∧ ¬ (𝐵𝑥) ≠ (0g𝑀)))
2 nne 2940 . . . . . . 7 (¬ (𝐴𝑥) ≠ (0g𝑀) ↔ (𝐴𝑥) = (0g𝑀))
3 nne 2940 . . . . . . 7 (¬ (𝐵𝑥) ≠ (0g𝑀) ↔ (𝐵𝑥) = (0g𝑀))
42, 3anbi12i 626 . . . . . 6 ((¬ (𝐴𝑥) ≠ (0g𝑀) ∧ ¬ (𝐵𝑥) ≠ (0g𝑀)) ↔ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀)))
51, 4bitri 274 . . . . 5 (¬ ((𝐴𝑥) ≠ (0g𝑀) ∨ (𝐵𝑥) ≠ (0g𝑀)) ↔ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀)))
6 elmapfn 8888 . . . . . . . . . . . 12 (𝐴 ∈ (𝑅m 𝑉) → 𝐴 Fn 𝑉)
76ad2antrl 726 . . . . . . . . . . 11 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → 𝐴 Fn 𝑉)
87adantr 479 . . . . . . . . . 10 ((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) → 𝐴 Fn 𝑉)
9 elmapfn 8888 . . . . . . . . . . . 12 (𝐵 ∈ (𝑅m 𝑉) → 𝐵 Fn 𝑉)
109ad2antll 727 . . . . . . . . . . 11 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → 𝐵 Fn 𝑉)
1110adantr 479 . . . . . . . . . 10 ((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) → 𝐵 Fn 𝑉)
12 simplr 767 . . . . . . . . . . 11 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → 𝑉𝑋)
1312adantr 479 . . . . . . . . . 10 ((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) → 𝑉𝑋)
14 inidm 4219 . . . . . . . . . 10 (𝑉𝑉) = 𝑉
15 simplrl 775 . . . . . . . . . 10 (((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) ∧ 𝑥𝑉) → (𝐴𝑥) = (0g𝑀))
16 simplrr 776 . . . . . . . . . 10 (((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) ∧ 𝑥𝑉) → (𝐵𝑥) = (0g𝑀))
178, 11, 13, 13, 14, 15, 16ofval 7700 . . . . . . . . 9 (((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) ∧ 𝑥𝑉) → ((𝐴f (+g𝑀)𝐵)‘𝑥) = ((0g𝑀)(+g𝑀)(0g𝑀)))
1817an32s 650 . . . . . . . 8 (((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) → ((𝐴f (+g𝑀)𝐵)‘𝑥) = ((0g𝑀)(+g𝑀)(0g𝑀)))
19 eqid 2727 . . . . . . . . . . . 12 (Base‘𝑀) = (Base‘𝑀)
20 eqid 2727 . . . . . . . . . . . 12 (0g𝑀) = (0g𝑀)
2119, 20mndidcl 18714 . . . . . . . . . . 11 (𝑀 ∈ Mnd → (0g𝑀) ∈ (Base‘𝑀))
2221ancli 547 . . . . . . . . . 10 (𝑀 ∈ Mnd → (𝑀 ∈ Mnd ∧ (0g𝑀) ∈ (Base‘𝑀)))
2322ad4antr 730 . . . . . . . . 9 (((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) → (𝑀 ∈ Mnd ∧ (0g𝑀) ∈ (Base‘𝑀)))
24 eqid 2727 . . . . . . . . . 10 (+g𝑀) = (+g𝑀)
2519, 24, 20mndlid 18719 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (0g𝑀) ∈ (Base‘𝑀)) → ((0g𝑀)(+g𝑀)(0g𝑀)) = (0g𝑀))
2623, 25syl 17 . . . . . . . 8 (((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) → ((0g𝑀)(+g𝑀)(0g𝑀)) = (0g𝑀))
2718, 26eqtrd 2767 . . . . . . 7 (((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) → ((𝐴f (+g𝑀)𝐵)‘𝑥) = (0g𝑀))
28 nne 2940 . . . . . . 7 (¬ ((𝐴f (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀) ↔ ((𝐴f (+g𝑀)𝐵)‘𝑥) = (0g𝑀))
2927, 28sylibr 233 . . . . . 6 (((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) → ¬ ((𝐴f (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀))
3029ex 411 . . . . 5 ((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) → (((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀)) → ¬ ((𝐴f (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀)))
315, 30biimtrid 241 . . . 4 ((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) → (¬ ((𝐴𝑥) ≠ (0g𝑀) ∨ (𝐵𝑥) ≠ (0g𝑀)) → ¬ ((𝐴f (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀)))
3231con4d 115 . . 3 ((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) → (((𝐴f (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀) → ((𝐴𝑥) ≠ (0g𝑀) ∨ (𝐵𝑥) ≠ (0g𝑀))))
3332ss2rabdv 4071 . 2 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → {𝑥𝑉 ∣ ((𝐴f (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥𝑉 ∣ ((𝐴𝑥) ≠ (0g𝑀) ∨ (𝐵𝑥) ≠ (0g𝑀))})
347, 10, 12, 12offun 7703 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → Fun (𝐴f (+g𝑀)𝐵))
35 ovexd 7459 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝐴f (+g𝑀)𝐵) ∈ V)
36 fvexd 6915 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (0g𝑀) ∈ V)
37 suppval1 8175 . . . 4 ((Fun (𝐴f (+g𝑀)𝐵) ∧ (𝐴f (+g𝑀)𝐵) ∈ V ∧ (0g𝑀) ∈ V) → ((𝐴f (+g𝑀)𝐵) supp (0g𝑀)) = {𝑥 ∈ dom (𝐴f (+g𝑀)𝐵) ∣ ((𝐴f (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀)})
3834, 35, 36, 37syl3anc 1368 . . 3 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → ((𝐴f (+g𝑀)𝐵) supp (0g𝑀)) = {𝑥 ∈ dom (𝐴f (+g𝑀)𝐵) ∣ ((𝐴f (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀)})
3912, 7, 10offvalfv 47457 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝐴f (+g𝑀)𝐵) = (𝑣𝑉 ↦ ((𝐴𝑣)(+g𝑀)(𝐵𝑣))))
4039dmeqd 5910 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → dom (𝐴f (+g𝑀)𝐵) = dom (𝑣𝑉 ↦ ((𝐴𝑣)(+g𝑀)(𝐵𝑣))))
41 ovex 7457 . . . . . 6 ((𝐴𝑣)(+g𝑀)(𝐵𝑣)) ∈ V
42 eqid 2727 . . . . . 6 (𝑣𝑉 ↦ ((𝐴𝑣)(+g𝑀)(𝐵𝑣))) = (𝑣𝑉 ↦ ((𝐴𝑣)(+g𝑀)(𝐵𝑣)))
4341, 42dmmpti 6702 . . . . 5 dom (𝑣𝑉 ↦ ((𝐴𝑣)(+g𝑀)(𝐵𝑣))) = 𝑉
4440, 43eqtrdi 2783 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → dom (𝐴f (+g𝑀)𝐵) = 𝑉)
4544rabeqdv 3444 . . 3 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → {𝑥 ∈ dom (𝐴f (+g𝑀)𝐵) ∣ ((𝐴f (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀)} = {𝑥𝑉 ∣ ((𝐴f (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀)})
4638, 45eqtrd 2767 . 2 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → ((𝐴f (+g𝑀)𝐵) supp (0g𝑀)) = {𝑥𝑉 ∣ ((𝐴f (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀)})
47 elmapfun 8889 . . . . . . 7 (𝐴 ∈ (𝑅m 𝑉) → Fun 𝐴)
48 id 22 . . . . . . 7 (𝐴 ∈ (𝑅m 𝑉) → 𝐴 ∈ (𝑅m 𝑉))
49 fvexd 6915 . . . . . . 7 (𝐴 ∈ (𝑅m 𝑉) → (0g𝑀) ∈ V)
50 suppval1 8175 . . . . . . 7 ((Fun 𝐴𝐴 ∈ (𝑅m 𝑉) ∧ (0g𝑀) ∈ V) → (𝐴 supp (0g𝑀)) = {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑀)})
5147, 48, 49, 50syl3anc 1368 . . . . . 6 (𝐴 ∈ (𝑅m 𝑉) → (𝐴 supp (0g𝑀)) = {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑀)})
52 elmapi 8872 . . . . . . 7 (𝐴 ∈ (𝑅m 𝑉) → 𝐴:𝑉𝑅)
53 fdm 6734 . . . . . . 7 (𝐴:𝑉𝑅 → dom 𝐴 = 𝑉)
54 rabeq 3443 . . . . . . 7 (dom 𝐴 = 𝑉 → {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑀)} = {𝑥𝑉 ∣ (𝐴𝑥) ≠ (0g𝑀)})
5552, 53, 543syl 18 . . . . . 6 (𝐴 ∈ (𝑅m 𝑉) → {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑀)} = {𝑥𝑉 ∣ (𝐴𝑥) ≠ (0g𝑀)})
5651, 55eqtrd 2767 . . . . 5 (𝐴 ∈ (𝑅m 𝑉) → (𝐴 supp (0g𝑀)) = {𝑥𝑉 ∣ (𝐴𝑥) ≠ (0g𝑀)})
5756ad2antrl 726 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝐴 supp (0g𝑀)) = {𝑥𝑉 ∣ (𝐴𝑥) ≠ (0g𝑀)})
58 elmapfun 8889 . . . . . . 7 (𝐵 ∈ (𝑅m 𝑉) → Fun 𝐵)
5958ad2antll 727 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → Fun 𝐵)
60 simprr 771 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → 𝐵 ∈ (𝑅m 𝑉))
61 suppval1 8175 . . . . . 6 ((Fun 𝐵𝐵 ∈ (𝑅m 𝑉) ∧ (0g𝑀) ∈ V) → (𝐵 supp (0g𝑀)) = {𝑥 ∈ dom 𝐵 ∣ (𝐵𝑥) ≠ (0g𝑀)})
6259, 60, 36, 61syl3anc 1368 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝐵 supp (0g𝑀)) = {𝑥 ∈ dom 𝐵 ∣ (𝐵𝑥) ≠ (0g𝑀)})
63 elmapi 8872 . . . . . . . 8 (𝐵 ∈ (𝑅m 𝑉) → 𝐵:𝑉𝑅)
6463fdmd 6736 . . . . . . 7 (𝐵 ∈ (𝑅m 𝑉) → dom 𝐵 = 𝑉)
6564ad2antll 727 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → dom 𝐵 = 𝑉)
6665rabeqdv 3444 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → {𝑥 ∈ dom 𝐵 ∣ (𝐵𝑥) ≠ (0g𝑀)} = {𝑥𝑉 ∣ (𝐵𝑥) ≠ (0g𝑀)})
6762, 66eqtrd 2767 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝐵 supp (0g𝑀)) = {𝑥𝑉 ∣ (𝐵𝑥) ≠ (0g𝑀)})
6857, 67uneq12d 4163 . . 3 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → ((𝐴 supp (0g𝑀)) ∪ (𝐵 supp (0g𝑀))) = ({𝑥𝑉 ∣ (𝐴𝑥) ≠ (0g𝑀)} ∪ {𝑥𝑉 ∣ (𝐵𝑥) ≠ (0g𝑀)}))
69 unrab 4306 . . 3 ({𝑥𝑉 ∣ (𝐴𝑥) ≠ (0g𝑀)} ∪ {𝑥𝑉 ∣ (𝐵𝑥) ≠ (0g𝑀)}) = {𝑥𝑉 ∣ ((𝐴𝑥) ≠ (0g𝑀) ∨ (𝐵𝑥) ≠ (0g𝑀))}
7068, 69eqtrdi 2783 . 2 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → ((𝐴 supp (0g𝑀)) ∪ (𝐵 supp (0g𝑀))) = {𝑥𝑉 ∣ ((𝐴𝑥) ≠ (0g𝑀) ∨ (𝐵𝑥) ≠ (0g𝑀))})
7133, 46, 703sstr4d 4027 1 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → ((𝐴f (+g𝑀)𝐵) supp (0g𝑀)) ⊆ ((𝐴 supp (0g𝑀)) ∪ (𝐵 supp (0g𝑀))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  wo 845   = wceq 1533  wcel 2098  wne 2936  {crab 3428  Vcvv 3471  cun 3945  wss 3947  cmpt 5233  dom cdm 5680  Fun wfun 6545   Fn wfn 6546  wf 6547  cfv 6551  (class class class)co 7424  f cof 7687   supp csupp 8169  m cmap 8849  Basecbs 17185  +gcplusg 17238  0gc0g 17426  Mndcmnd 18699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7689  df-1st 7997  df-2nd 7998  df-supp 8170  df-map 8851  df-0g 17428  df-mgm 18605  df-sgrp 18684  df-mnd 18700
This theorem is referenced by:  mndpsuppfi  47490
  Copyright terms: Public domain W3C validator
OSZAR »