MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoxopn0yelv Structured version   Visualization version   GIF version

Theorem mpoxopn0yelv 8219
Description: If there is an element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, then the second argument is an element of the first component of the first argument. (Contributed by Alexander van der Vekens, 10-Oct-2017.)
Hypothesis
Ref Expression
mpoxopn0yelv.f 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ 𝐶)
Assertion
Ref Expression
mpoxopn0yelv ((𝑉𝑋𝑊𝑌) → (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) → 𝐾𝑉))
Distinct variable groups:   𝑥,𝑦   𝑥,𝐾   𝑥,𝑉   𝑥,𝑊
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐾(𝑦)   𝑁(𝑥,𝑦)   𝑉(𝑦)   𝑊(𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem mpoxopn0yelv
StepHypRef Expression
1 mpoxopn0yelv.f . . . . 5 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ 𝐶)
21dmmpossx 8070 . . . 4 dom 𝐹 𝑥 ∈ V ({𝑥} × (1st𝑥))
3 elfvdm 6934 . . . . 5 (𝑁 ∈ (𝐹‘⟨⟨𝑉, 𝑊⟩, 𝐾⟩) → ⟨⟨𝑉, 𝑊⟩, 𝐾⟩ ∈ dom 𝐹)
4 df-ov 7423 . . . . 5 (⟨𝑉, 𝑊𝐹𝐾) = (𝐹‘⟨⟨𝑉, 𝑊⟩, 𝐾⟩)
53, 4eleq2s 2847 . . . 4 (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) → ⟨⟨𝑉, 𝑊⟩, 𝐾⟩ ∈ dom 𝐹)
62, 5sselid 3978 . . 3 (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) → ⟨⟨𝑉, 𝑊⟩, 𝐾⟩ ∈ 𝑥 ∈ V ({𝑥} × (1st𝑥)))
7 fveq2 6897 . . . . 5 (𝑥 = ⟨𝑉, 𝑊⟩ → (1st𝑥) = (1st ‘⟨𝑉, 𝑊⟩))
87opeliunxp2 5841 . . . 4 (⟨⟨𝑉, 𝑊⟩, 𝐾⟩ ∈ 𝑥 ∈ V ({𝑥} × (1st𝑥)) ↔ (⟨𝑉, 𝑊⟩ ∈ V ∧ 𝐾 ∈ (1st ‘⟨𝑉, 𝑊⟩)))
98simprbi 496 . . 3 (⟨⟨𝑉, 𝑊⟩, 𝐾⟩ ∈ 𝑥 ∈ V ({𝑥} × (1st𝑥)) → 𝐾 ∈ (1st ‘⟨𝑉, 𝑊⟩))
106, 9syl 17 . 2 (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) → 𝐾 ∈ (1st ‘⟨𝑉, 𝑊⟩))
11 op1stg 8005 . . 3 ((𝑉𝑋𝑊𝑌) → (1st ‘⟨𝑉, 𝑊⟩) = 𝑉)
1211eleq2d 2815 . 2 ((𝑉𝑋𝑊𝑌) → (𝐾 ∈ (1st ‘⟨𝑉, 𝑊⟩) ↔ 𝐾𝑉))
1310, 12imbitrid 243 1 ((𝑉𝑋𝑊𝑌) → (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) → 𝐾𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  Vcvv 3471  {csn 4629  cop 4635   ciun 4996   × cxp 5676  dom cdm 5678  cfv 6548  (class class class)co 7420  cmpo 7422  1st c1st 7991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fv 6556  df-ov 7423  df-oprab 7424  df-mpo 7425  df-1st 7993  df-2nd 7994
This theorem is referenced by:  mpoxopynvov0g  8220  mpoxopovel  8226
  Copyright terms: Public domain W3C validator
OSZAR »