![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulridi | Structured version Visualization version GIF version |
Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
mulridi | ⊢ (𝐴 · 1) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | mulrid 11237 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 · 1) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 (class class class)co 7415 ℂcc 11131 1c1 11134 · cmul 11138 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-mulcl 11195 ax-mulcom 11197 ax-mulass 11199 ax-distr 11200 ax-1rid 11203 ax-cnre 11206 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-iota 6495 df-fv 6551 df-ov 7418 |
This theorem is referenced by: addrid 11419 0lt1 11761 muleqadd 11883 1t1e1 12399 2t1e2 12400 3t1e3 12402 halfpm6th 12458 9p1e10 12704 numltc 12728 numsucc 12742 dec10p 12745 numadd 12749 numaddc 12750 11multnc 12770 4t3lem 12799 5t2e10 12802 9t11e99 12832 nn0opthlem1 14254 faclbnd4lem1 14279 rei 15130 imi 15131 cji 15133 sqrtm1 15249 0.999... 15854 efival 16123 ef01bndlem 16155 3lcm2e6 16698 decsplit0b 17043 2exp8 17052 37prm 17084 43prm 17085 83prm 17086 139prm 17087 163prm 17088 317prm 17089 1259lem1 17094 1259lem2 17095 1259lem3 17096 1259lem4 17097 1259lem5 17098 2503lem1 17100 2503lem2 17101 2503prm 17103 4001lem1 17104 4001lem2 17105 4001lem3 17106 cnmsgnsubg 21503 mdetralt 22504 dveflem 25905 dvsincos 25907 efhalfpi 26400 pige3ALT 26448 cosne0 26457 efif1olem4 26473 logf1o2 26578 asin1 26820 dvatan 26861 log2ublem3 26874 log2ub 26875 birthday 26880 basellem9 27015 ppiub 27131 chtub 27139 bposlem8 27218 lgsdir2 27257 mulog2sumlem2 27462 pntlemb 27524 avril1 30267 ipidsq 30514 nmopadjlem 31893 nmopcoadji 31905 unierri 31908 sgnmul 34157 signswch 34188 itgexpif 34233 reprlt 34246 breprexp 34260 hgt750lem 34278 hgt750lem2 34279 circum 35273 dvasin 37172 3lexlogpow5ineq1 41520 3lexlogpow5ineq5 41526 aks4d1p1 41542 235t711 41858 ex-decpmul 41859 it1ei 41868 sqrtcval2 43063 resqrtvalex 43066 imsqrtvalex 43067 inductionexd 43576 xralrple3 44747 wallispi 45449 wallispi2lem2 45451 stirlinglem1 45453 dirkertrigeqlem3 45479 257prm 46892 fmtno4prmfac193 46904 fmtno5fac 46913 139prmALT 46927 127prm 46930 2exp340mod341 47064 |
Copyright terms: Public domain | W3C validator |