Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naddwordnexlem0 Structured version   Visualization version   GIF version

Theorem naddwordnexlem0 42908
Description: When 𝐴 is the sum of a limit ordinal (or zero) and a natural number and 𝐵 is the sum of a larger limit ordinal and a smaller natural number, (ω ·o suc 𝐶) lies between 𝐴 and 𝐵. (Contributed by RP, 14-Feb-2025.)
Hypotheses
Ref Expression
naddwordnex.a (𝜑𝐴 = ((ω ·o 𝐶) +o 𝑀))
naddwordnex.b (𝜑𝐵 = ((ω ·o 𝐷) +o 𝑁))
naddwordnex.c (𝜑𝐶𝐷)
naddwordnex.d (𝜑𝐷 ∈ On)
naddwordnex.m (𝜑𝑀 ∈ ω)
naddwordnex.n (𝜑𝑁𝑀)
Assertion
Ref Expression
naddwordnexlem0 (𝜑 → (𝐴 ∈ (ω ·o suc 𝐶) ∧ (ω ·o suc 𝐶) ⊆ 𝐵))

Proof of Theorem naddwordnexlem0
StepHypRef Expression
1 omelon 9669 . . . . . 6 ω ∈ On
21a1i 11 . . . . 5 (𝜑 → ω ∈ On)
3 naddwordnex.d . . . . . . 7 (𝜑𝐷 ∈ On)
4 naddwordnex.c . . . . . . 7 (𝜑𝐶𝐷)
5 onelon 6394 . . . . . . 7 ((𝐷 ∈ On ∧ 𝐶𝐷) → 𝐶 ∈ On)
63, 4, 5syl2anc 582 . . . . . 6 (𝜑𝐶 ∈ On)
7 omcl 8555 . . . . . 6 ((ω ∈ On ∧ 𝐶 ∈ On) → (ω ·o 𝐶) ∈ On)
82, 6, 7syl2anc 582 . . . . 5 (𝜑 → (ω ·o 𝐶) ∈ On)
92, 8jca 510 . . . 4 (𝜑 → (ω ∈ On ∧ (ω ·o 𝐶) ∈ On))
10 naddwordnex.m . . . 4 (𝜑𝑀 ∈ ω)
11 oaordi 8565 . . . 4 ((ω ∈ On ∧ (ω ·o 𝐶) ∈ On) → (𝑀 ∈ ω → ((ω ·o 𝐶) +o 𝑀) ∈ ((ω ·o 𝐶) +o ω)))
129, 10, 11sylc 65 . . 3 (𝜑 → ((ω ·o 𝐶) +o 𝑀) ∈ ((ω ·o 𝐶) +o ω))
13 naddwordnex.a . . 3 (𝜑𝐴 = ((ω ·o 𝐶) +o 𝑀))
14 omsuc 8545 . . . 4 ((ω ∈ On ∧ 𝐶 ∈ On) → (ω ·o suc 𝐶) = ((ω ·o 𝐶) +o ω))
152, 6, 14syl2anc 582 . . 3 (𝜑 → (ω ·o suc 𝐶) = ((ω ·o 𝐶) +o ω))
1612, 13, 153eltr4d 2840 . 2 (𝜑𝐴 ∈ (ω ·o suc 𝐶))
17 onsuc 7813 . . . . . . 7 (𝐶 ∈ On → suc 𝐶 ∈ On)
186, 17syl 17 . . . . . 6 (𝜑 → suc 𝐶 ∈ On)
1918, 3, 23jca 1125 . . . . 5 (𝜑 → (suc 𝐶 ∈ On ∧ 𝐷 ∈ On ∧ ω ∈ On))
20 onsucss 42777 . . . . . 6 (𝐷 ∈ On → (𝐶𝐷 → suc 𝐶𝐷))
213, 4, 20sylc 65 . . . . 5 (𝜑 → suc 𝐶𝐷)
22 omwordi 8590 . . . . 5 ((suc 𝐶 ∈ On ∧ 𝐷 ∈ On ∧ ω ∈ On) → (suc 𝐶𝐷 → (ω ·o suc 𝐶) ⊆ (ω ·o 𝐷)))
2319, 21, 22sylc 65 . . . 4 (𝜑 → (ω ·o suc 𝐶) ⊆ (ω ·o 𝐷))
24 omcl 8555 . . . . . 6 ((ω ∈ On ∧ 𝐷 ∈ On) → (ω ·o 𝐷) ∈ On)
252, 3, 24syl2anc 582 . . . . 5 (𝜑 → (ω ·o 𝐷) ∈ On)
26 naddwordnex.n . . . . . . . 8 (𝜑𝑁𝑀)
2726, 10jca 510 . . . . . . 7 (𝜑 → (𝑁𝑀𝑀 ∈ ω))
28 ontr1 6415 . . . . . . 7 (ω ∈ On → ((𝑁𝑀𝑀 ∈ ω) → 𝑁 ∈ ω))
292, 27, 28sylc 65 . . . . . 6 (𝜑𝑁 ∈ ω)
30 nnon 7875 . . . . . 6 (𝑁 ∈ ω → 𝑁 ∈ On)
3129, 30syl 17 . . . . 5 (𝜑𝑁 ∈ On)
32 oaword1 8571 . . . . 5 (((ω ·o 𝐷) ∈ On ∧ 𝑁 ∈ On) → (ω ·o 𝐷) ⊆ ((ω ·o 𝐷) +o 𝑁))
3325, 31, 32syl2anc 582 . . . 4 (𝜑 → (ω ·o 𝐷) ⊆ ((ω ·o 𝐷) +o 𝑁))
3423, 33sstrd 3988 . . 3 (𝜑 → (ω ·o suc 𝐶) ⊆ ((ω ·o 𝐷) +o 𝑁))
35 naddwordnex.b . . 3 (𝜑𝐵 = ((ω ·o 𝐷) +o 𝑁))
3634, 35sseqtrrd 4019 . 2 (𝜑 → (ω ·o suc 𝐶) ⊆ 𝐵)
3716, 36jca 510 1 (𝜑 → (𝐴 ∈ (ω ·o suc 𝐶) ∧ (ω ·o suc 𝐶) ⊆ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wss 3945  Oncon0 6369  suc csuc 6371  (class class class)co 7417  ωcom 7869   +o coa 8482   ·o comu 8483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5428  ax-un 7739  ax-inf2 9664
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-oadd 8489  df-omul 8490
This theorem is referenced by:  naddwordnexlem1  42909  naddwordnexlem2  42910  naddwordnexlem3  42911
  Copyright terms: Public domain W3C validator
OSZAR »