![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > naddwordnexlem0 | Structured version Visualization version GIF version |
Description: When 𝐴 is the sum of a limit ordinal (or zero) and a natural number and 𝐵 is the sum of a larger limit ordinal and a smaller natural number, (ω ·o suc 𝐶) lies between 𝐴 and 𝐵. (Contributed by RP, 14-Feb-2025.) |
Ref | Expression |
---|---|
naddwordnex.a | ⊢ (𝜑 → 𝐴 = ((ω ·o 𝐶) +o 𝑀)) |
naddwordnex.b | ⊢ (𝜑 → 𝐵 = ((ω ·o 𝐷) +o 𝑁)) |
naddwordnex.c | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
naddwordnex.d | ⊢ (𝜑 → 𝐷 ∈ On) |
naddwordnex.m | ⊢ (𝜑 → 𝑀 ∈ ω) |
naddwordnex.n | ⊢ (𝜑 → 𝑁 ∈ 𝑀) |
Ref | Expression |
---|---|
naddwordnexlem0 | ⊢ (𝜑 → (𝐴 ∈ (ω ·o suc 𝐶) ∧ (ω ·o suc 𝐶) ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omelon 9669 | . . . . . 6 ⊢ ω ∈ On | |
2 | 1 | a1i 11 | . . . . 5 ⊢ (𝜑 → ω ∈ On) |
3 | naddwordnex.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ On) | |
4 | naddwordnex.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ 𝐷) | |
5 | onelon 6394 | . . . . . . 7 ⊢ ((𝐷 ∈ On ∧ 𝐶 ∈ 𝐷) → 𝐶 ∈ On) | |
6 | 3, 4, 5 | syl2anc 582 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ On) |
7 | omcl 8555 | . . . . . 6 ⊢ ((ω ∈ On ∧ 𝐶 ∈ On) → (ω ·o 𝐶) ∈ On) | |
8 | 2, 6, 7 | syl2anc 582 | . . . . 5 ⊢ (𝜑 → (ω ·o 𝐶) ∈ On) |
9 | 2, 8 | jca 510 | . . . 4 ⊢ (𝜑 → (ω ∈ On ∧ (ω ·o 𝐶) ∈ On)) |
10 | naddwordnex.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ω) | |
11 | oaordi 8565 | . . . 4 ⊢ ((ω ∈ On ∧ (ω ·o 𝐶) ∈ On) → (𝑀 ∈ ω → ((ω ·o 𝐶) +o 𝑀) ∈ ((ω ·o 𝐶) +o ω))) | |
12 | 9, 10, 11 | sylc 65 | . . 3 ⊢ (𝜑 → ((ω ·o 𝐶) +o 𝑀) ∈ ((ω ·o 𝐶) +o ω)) |
13 | naddwordnex.a | . . 3 ⊢ (𝜑 → 𝐴 = ((ω ·o 𝐶) +o 𝑀)) | |
14 | omsuc 8545 | . . . 4 ⊢ ((ω ∈ On ∧ 𝐶 ∈ On) → (ω ·o suc 𝐶) = ((ω ·o 𝐶) +o ω)) | |
15 | 2, 6, 14 | syl2anc 582 | . . 3 ⊢ (𝜑 → (ω ·o suc 𝐶) = ((ω ·o 𝐶) +o ω)) |
16 | 12, 13, 15 | 3eltr4d 2840 | . 2 ⊢ (𝜑 → 𝐴 ∈ (ω ·o suc 𝐶)) |
17 | onsuc 7813 | . . . . . . 7 ⊢ (𝐶 ∈ On → suc 𝐶 ∈ On) | |
18 | 6, 17 | syl 17 | . . . . . 6 ⊢ (𝜑 → suc 𝐶 ∈ On) |
19 | 18, 3, 2 | 3jca 1125 | . . . . 5 ⊢ (𝜑 → (suc 𝐶 ∈ On ∧ 𝐷 ∈ On ∧ ω ∈ On)) |
20 | onsucss 42777 | . . . . . 6 ⊢ (𝐷 ∈ On → (𝐶 ∈ 𝐷 → suc 𝐶 ⊆ 𝐷)) | |
21 | 3, 4, 20 | sylc 65 | . . . . 5 ⊢ (𝜑 → suc 𝐶 ⊆ 𝐷) |
22 | omwordi 8590 | . . . . 5 ⊢ ((suc 𝐶 ∈ On ∧ 𝐷 ∈ On ∧ ω ∈ On) → (suc 𝐶 ⊆ 𝐷 → (ω ·o suc 𝐶) ⊆ (ω ·o 𝐷))) | |
23 | 19, 21, 22 | sylc 65 | . . . 4 ⊢ (𝜑 → (ω ·o suc 𝐶) ⊆ (ω ·o 𝐷)) |
24 | omcl 8555 | . . . . . 6 ⊢ ((ω ∈ On ∧ 𝐷 ∈ On) → (ω ·o 𝐷) ∈ On) | |
25 | 2, 3, 24 | syl2anc 582 | . . . . 5 ⊢ (𝜑 → (ω ·o 𝐷) ∈ On) |
26 | naddwordnex.n | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ 𝑀) | |
27 | 26, 10 | jca 510 | . . . . . . 7 ⊢ (𝜑 → (𝑁 ∈ 𝑀 ∧ 𝑀 ∈ ω)) |
28 | ontr1 6415 | . . . . . . 7 ⊢ (ω ∈ On → ((𝑁 ∈ 𝑀 ∧ 𝑀 ∈ ω) → 𝑁 ∈ ω)) | |
29 | 2, 27, 28 | sylc 65 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ω) |
30 | nnon 7875 | . . . . . 6 ⊢ (𝑁 ∈ ω → 𝑁 ∈ On) | |
31 | 29, 30 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ On) |
32 | oaword1 8571 | . . . . 5 ⊢ (((ω ·o 𝐷) ∈ On ∧ 𝑁 ∈ On) → (ω ·o 𝐷) ⊆ ((ω ·o 𝐷) +o 𝑁)) | |
33 | 25, 31, 32 | syl2anc 582 | . . . 4 ⊢ (𝜑 → (ω ·o 𝐷) ⊆ ((ω ·o 𝐷) +o 𝑁)) |
34 | 23, 33 | sstrd 3988 | . . 3 ⊢ (𝜑 → (ω ·o suc 𝐶) ⊆ ((ω ·o 𝐷) +o 𝑁)) |
35 | naddwordnex.b | . . 3 ⊢ (𝜑 → 𝐵 = ((ω ·o 𝐷) +o 𝑁)) | |
36 | 34, 35 | sseqtrrd 4019 | . 2 ⊢ (𝜑 → (ω ·o suc 𝐶) ⊆ 𝐵) |
37 | 16, 36 | jca 510 | 1 ⊢ (𝜑 → (𝐴 ∈ (ω ·o suc 𝐶) ∧ (ω ·o suc 𝐶) ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ⊆ wss 3945 Oncon0 6369 suc csuc 6371 (class class class)co 7417 ωcom 7869 +o coa 8482 ·o comu 8483 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5428 ax-un 7739 ax-inf2 9664 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-oadd 8489 df-omul 8490 |
This theorem is referenced by: naddwordnexlem1 42909 naddwordnexlem2 42910 naddwordnexlem3 42911 |
Copyright terms: Public domain | W3C validator |