Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omessre Structured version   Visualization version   GIF version

Theorem omessre 45898
Description: If the outer measure of a set is real, then the outer measure of any of its subset is real. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
omessre.o (𝜑𝑂 ∈ OutMeas)
omessre.x 𝑋 = dom 𝑂
omessre.a (𝜑𝐴𝑋)
omessre.re (𝜑 → (𝑂𝐴) ∈ ℝ)
omessre.b (𝜑𝐵𝐴)
Assertion
Ref Expression
omessre (𝜑 → (𝑂𝐵) ∈ ℝ)

Proof of Theorem omessre
StepHypRef Expression
1 rge0ssre 13465 . 2 (0[,)+∞) ⊆ ℝ
2 0xr 11291 . . . 4 0 ∈ ℝ*
32a1i 11 . . 3 (𝜑 → 0 ∈ ℝ*)
4 pnfxr 11298 . . . 4 +∞ ∈ ℝ*
54a1i 11 . . 3 (𝜑 → +∞ ∈ ℝ*)
6 omessre.o . . . 4 (𝜑𝑂 ∈ OutMeas)
7 omessre.x . . . 4 𝑋 = dom 𝑂
8 omessre.b . . . . 5 (𝜑𝐵𝐴)
9 omessre.a . . . . 5 (𝜑𝐴𝑋)
108, 9sstrd 3990 . . . 4 (𝜑𝐵𝑋)
116, 7, 10omexrcl 45895 . . 3 (𝜑 → (𝑂𝐵) ∈ ℝ*)
126, 7, 10omecl 45891 . . . 4 (𝜑 → (𝑂𝐵) ∈ (0[,]+∞))
13 iccgelb 13412 . . . 4 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝑂𝐵) ∈ (0[,]+∞)) → 0 ≤ (𝑂𝐵))
143, 5, 12, 13syl3anc 1369 . . 3 (𝜑 → 0 ≤ (𝑂𝐵))
15 omessre.re . . . . 5 (𝜑 → (𝑂𝐴) ∈ ℝ)
1615rexrd 11294 . . . 4 (𝜑 → (𝑂𝐴) ∈ ℝ*)
176, 7, 9, 8omessle 45886 . . . 4 (𝜑 → (𝑂𝐵) ≤ (𝑂𝐴))
1815ltpnfd 13133 . . . 4 (𝜑 → (𝑂𝐴) < +∞)
1911, 16, 5, 17, 18xrlelttrd 13171 . . 3 (𝜑 → (𝑂𝐵) < +∞)
203, 5, 11, 14, 19elicod 13406 . 2 (𝜑 → (𝑂𝐵) ∈ (0[,)+∞))
211, 20sselid 3978 1 (𝜑 → (𝑂𝐵) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  wss 3947   cuni 4908   class class class wbr 5148  dom cdm 5678  cfv 6548  (class class class)co 7420  cr 11137  0cc0 11138  +∞cpnf 11275  *cxr 11277  cle 11279  [,)cico 13358  [,]cicc 13359  OutMeascome 45877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-addrcl 11199  ax-rnegex 11209  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-ov 7423  df-oprab 7424  df-mpo 7425  df-1st 7993  df-2nd 7994  df-er 8724  df-en 8964  df-dom 8965  df-sdom 8966  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-ico 13362  df-icc 13363  df-ome 45878
This theorem is referenced by:  carageniuncllem1  45909  carageniuncllem2  45910
  Copyright terms: Public domain W3C validator
OSZAR »