MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omword1 Structured version   Visualization version   GIF version

Theorem omword1 8594
Description: An ordinal is less than or equal to its product with another. Lemma 3.11 of [Schloeder] p. 8. (Contributed by NM, 21-Dec-2004.)
Assertion
Ref Expression
omword1 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → 𝐴 ⊆ (𝐴 ·o 𝐵))

Proof of Theorem omword1
StepHypRef Expression
1 eloni 6379 . . . . 5 (𝐵 ∈ On → Ord 𝐵)
2 ordgt0ge1 8514 . . . . 5 (Ord 𝐵 → (∅ ∈ 𝐵 ↔ 1o𝐵))
31, 2syl 17 . . . 4 (𝐵 ∈ On → (∅ ∈ 𝐵 ↔ 1o𝐵))
43adantl 481 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐵 ↔ 1o𝐵))
5 1on 8499 . . . . . 6 1o ∈ On
6 omwordi 8592 . . . . . 6 ((1o ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → (1o𝐵 → (𝐴 ·o 1o) ⊆ (𝐴 ·o 𝐵)))
75, 6mp3an1 1445 . . . . 5 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (1o𝐵 → (𝐴 ·o 1o) ⊆ (𝐴 ·o 𝐵)))
87ancoms 458 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (1o𝐵 → (𝐴 ·o 1o) ⊆ (𝐴 ·o 𝐵)))
9 om1 8563 . . . . . 6 (𝐴 ∈ On → (𝐴 ·o 1o) = 𝐴)
109adantr 480 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 1o) = 𝐴)
1110sseq1d 4011 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 1o) ⊆ (𝐴 ·o 𝐵) ↔ 𝐴 ⊆ (𝐴 ·o 𝐵)))
128, 11sylibd 238 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (1o𝐵𝐴 ⊆ (𝐴 ·o 𝐵)))
134, 12sylbid 239 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐵𝐴 ⊆ (𝐴 ·o 𝐵)))
1413imp 406 1 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → 𝐴 ⊆ (𝐴 ·o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wss 3947  c0 4323  Ord word 6368  Oncon0 6369  (class class class)co 7420  1oc1o 8480   ·o comu 8485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-oadd 8491  df-omul 8492
This theorem is referenced by:  om00  8596  cantnflem3  9715  cantnflem4  9716  cnfcomlem  9723  omge1  42726  cantnftermord  42749  naddwordnexlem4  42831
  Copyright terms: Public domain W3C validator
OSZAR »