![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onssnum | Structured version Visualization version GIF version |
Description: All subsets of the ordinals are numerable. (Contributed by Mario Carneiro, 12-Feb-2013.) |
Ref | Expression |
---|---|
onssnum | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ On) → 𝐴 ∈ dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexg 7743 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
2 | ssorduni 7779 | . . . 4 ⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) | |
3 | elong 6372 | . . . . 5 ⊢ (∪ 𝐴 ∈ V → (∪ 𝐴 ∈ On ↔ Ord ∪ 𝐴)) | |
4 | 3 | biimpar 476 | . . . 4 ⊢ ((∪ 𝐴 ∈ V ∧ Ord ∪ 𝐴) → ∪ 𝐴 ∈ On) |
5 | 1, 2, 4 | syl2an 594 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ On) → ∪ 𝐴 ∈ On) |
6 | onsuc 7812 | . . 3 ⊢ (∪ 𝐴 ∈ On → suc ∪ 𝐴 ∈ On) | |
7 | onenon 9972 | . . 3 ⊢ (suc ∪ 𝐴 ∈ On → suc ∪ 𝐴 ∈ dom card) | |
8 | 5, 6, 7 | 3syl 18 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ On) → suc ∪ 𝐴 ∈ dom card) |
9 | onsucuni 7829 | . . 3 ⊢ (𝐴 ⊆ On → 𝐴 ⊆ suc ∪ 𝐴) | |
10 | 9 | adantl 480 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ On) → 𝐴 ⊆ suc ∪ 𝐴) |
11 | ssnum 10062 | . 2 ⊢ ((suc ∪ 𝐴 ∈ dom card ∧ 𝐴 ⊆ suc ∪ 𝐴) → 𝐴 ∈ dom card) | |
12 | 8, 10, 11 | syl2anc 582 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ On) → 𝐴 ∈ dom card) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2098 Vcvv 3463 ⊆ wss 3939 ∪ cuni 4903 dom cdm 5672 Ord word 6363 Oncon0 6364 suc csuc 6366 cardccrd 9958 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7372 df-ov 7419 df-2nd 7992 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-er 8723 df-en 8963 df-dom 8964 df-card 9962 |
This theorem is referenced by: dfac12lem3 10168 cfeq0 10279 cfsuc 10280 cff1 10281 cfflb 10282 cflim2 10286 cfss 10288 cfslb 10289 |
Copyright terms: Public domain | W3C validator |