MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onssnum Structured version   Visualization version   GIF version

Theorem onssnum 10063
Description: All subsets of the ordinals are numerable. (Contributed by Mario Carneiro, 12-Feb-2013.)
Assertion
Ref Expression
onssnum ((𝐴𝑉𝐴 ⊆ On) → 𝐴 ∈ dom card)

Proof of Theorem onssnum
StepHypRef Expression
1 uniexg 7743 . . . 4 (𝐴𝑉 𝐴 ∈ V)
2 ssorduni 7779 . . . 4 (𝐴 ⊆ On → Ord 𝐴)
3 elong 6372 . . . . 5 ( 𝐴 ∈ V → ( 𝐴 ∈ On ↔ Ord 𝐴))
43biimpar 476 . . . 4 (( 𝐴 ∈ V ∧ Ord 𝐴) → 𝐴 ∈ On)
51, 2, 4syl2an 594 . . 3 ((𝐴𝑉𝐴 ⊆ On) → 𝐴 ∈ On)
6 onsuc 7812 . . 3 ( 𝐴 ∈ On → suc 𝐴 ∈ On)
7 onenon 9972 . . 3 (suc 𝐴 ∈ On → suc 𝐴 ∈ dom card)
85, 6, 73syl 18 . 2 ((𝐴𝑉𝐴 ⊆ On) → suc 𝐴 ∈ dom card)
9 onsucuni 7829 . . 3 (𝐴 ⊆ On → 𝐴 ⊆ suc 𝐴)
109adantl 480 . 2 ((𝐴𝑉𝐴 ⊆ On) → 𝐴 ⊆ suc 𝐴)
11 ssnum 10062 . 2 ((suc 𝐴 ∈ dom card ∧ 𝐴 ⊆ suc 𝐴) → 𝐴 ∈ dom card)
128, 10, 11syl2anc 582 1 ((𝐴𝑉𝐴 ⊆ On) → 𝐴 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wcel 2098  Vcvv 3463  wss 3939   cuni 4903  dom cdm 5672  Ord word 6363  Oncon0 6364  suc csuc 6366  cardccrd 9958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7372  df-ov 7419  df-2nd 7992  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-er 8723  df-en 8963  df-dom 8964  df-card 9962
This theorem is referenced by:  dfac12lem3  10168  cfeq0  10279  cfsuc  10280  cff1  10281  cfflb  10282  cflim2  10286  cfss  10288  cfslb  10289
  Copyright terms: Public domain W3C validator
OSZAR »