![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > osumcllem4N | Structured version Visualization version GIF version |
Description: Lemma for osumclN 39440. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
osumcllem.l | ⊢ ≤ = (le‘𝐾) |
osumcllem.j | ⊢ ∨ = (join‘𝐾) |
osumcllem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
osumcllem.p | ⊢ + = (+𝑃‘𝐾) |
osumcllem.o | ⊢ ⊥ = (⊥𝑃‘𝐾) |
osumcllem.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
osumcllem.m | ⊢ 𝑀 = (𝑋 + {𝑝}) |
osumcllem.u | ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) |
Ref | Expression |
---|---|
osumcllem4N | ⊢ (((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌)) → 𝑞 ≠ 𝑟) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4334 | . . 3 ⊢ (𝑟 ∈ (𝑋 ∩ 𝑌) → ¬ (𝑋 ∩ 𝑌) = ∅) | |
2 | incom 4201 | . . . . . . 7 ⊢ (𝑋 ∩ 𝑌) = (𝑌 ∩ 𝑋) | |
3 | sslin 4235 | . . . . . . . 8 ⊢ (𝑋 ⊆ ( ⊥ ‘𝑌) → (𝑌 ∩ 𝑋) ⊆ (𝑌 ∩ ( ⊥ ‘𝑌))) | |
4 | 3 | 3ad2ant3 1133 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (𝑌 ∩ 𝑋) ⊆ (𝑌 ∩ ( ⊥ ‘𝑌))) |
5 | 2, 4 | eqsstrid 4028 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (𝑋 ∩ 𝑌) ⊆ (𝑌 ∩ ( ⊥ ‘𝑌))) |
6 | osumcllem.a | . . . . . . . 8 ⊢ 𝐴 = (Atoms‘𝐾) | |
7 | osumcllem.o | . . . . . . . 8 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
8 | 6, 7 | pnonsingN 39406 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴) → (𝑌 ∩ ( ⊥ ‘𝑌)) = ∅) |
9 | 8 | 3adant3 1130 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (𝑌 ∩ ( ⊥ ‘𝑌)) = ∅) |
10 | 5, 9 | sseqtrd 4020 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (𝑋 ∩ 𝑌) ⊆ ∅) |
11 | ss0b 4398 | . . . . 5 ⊢ ((𝑋 ∩ 𝑌) ⊆ ∅ ↔ (𝑋 ∩ 𝑌) = ∅) | |
12 | 10, 11 | sylib 217 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (𝑋 ∩ 𝑌) = ∅) |
13 | 12 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌)) → (𝑋 ∩ 𝑌) = ∅) |
14 | 1, 13 | nsyl3 138 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌)) → ¬ 𝑟 ∈ (𝑋 ∩ 𝑌)) |
15 | simprr 772 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌)) → 𝑞 ∈ 𝑌) | |
16 | eleq1w 2812 | . . . . . 6 ⊢ (𝑞 = 𝑟 → (𝑞 ∈ 𝑌 ↔ 𝑟 ∈ 𝑌)) | |
17 | 15, 16 | syl5ibcom 244 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌)) → (𝑞 = 𝑟 → 𝑟 ∈ 𝑌)) |
18 | simprl 770 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌)) → 𝑟 ∈ 𝑋) | |
19 | 17, 18 | jctild 525 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌)) → (𝑞 = 𝑟 → (𝑟 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌))) |
20 | elin 3963 | . . . 4 ⊢ (𝑟 ∈ (𝑋 ∩ 𝑌) ↔ (𝑟 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌)) | |
21 | 19, 20 | imbitrrdi 251 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌)) → (𝑞 = 𝑟 → 𝑟 ∈ (𝑋 ∩ 𝑌))) |
22 | 21 | necon3bd 2951 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌)) → (¬ 𝑟 ∈ (𝑋 ∩ 𝑌) → 𝑞 ≠ 𝑟)) |
23 | 14, 22 | mpd 15 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌)) → 𝑞 ≠ 𝑟) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2937 ∩ cin 3946 ⊆ wss 3947 ∅c0 4323 {csn 4629 ‘cfv 6548 (class class class)co 7420 lecple 17239 joincjn 18302 Atomscatm 38735 HLchlt 38822 +𝑃cpadd 39268 ⊥𝑃cpolN 39375 PSubClcpscN 39407 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-proset 18286 df-poset 18304 df-plt 18321 df-lub 18337 df-glb 18338 df-join 18339 df-meet 18340 df-p0 18416 df-p1 18417 df-lat 18423 df-clat 18490 df-oposet 38648 df-ol 38650 df-oml 38651 df-covers 38738 df-ats 38739 df-atl 38770 df-cvlat 38794 df-hlat 38823 df-pmap 38977 df-polarityN 39376 |
This theorem is referenced by: osumcllem6N 39434 |
Copyright terms: Public domain | W3C validator |