![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > padd12N | Structured version Visualization version GIF version |
Description: Commutative/associative law for projective subspace sum. (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
paddass.a | ⊢ 𝐴 = (Atoms‘𝐾) |
paddass.p | ⊢ + = (+𝑃‘𝐾) |
Ref | Expression |
---|---|
padd12N | ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 38962 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | 1 | adantr 479 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → 𝐾 ∈ Lat) |
3 | simpr1 1191 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → 𝑋 ⊆ 𝐴) | |
4 | simpr2 1192 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → 𝑌 ⊆ 𝐴) | |
5 | paddass.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | paddass.p | . . . . 5 ⊢ + = (+𝑃‘𝐾) | |
7 | 5, 6 | paddcom 39413 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
8 | 2, 3, 4, 7 | syl3anc 1368 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
9 | 8 | oveq1d 7434 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑋 + 𝑌) + 𝑍) = ((𝑌 + 𝑋) + 𝑍)) |
10 | 5, 6 | paddass 39438 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
11 | simpl 481 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → 𝐾 ∈ HL) | |
12 | simpr3 1193 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → 𝑍 ⊆ 𝐴) | |
13 | 5, 6 | paddass 39438 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑌 + 𝑋) + 𝑍) = (𝑌 + (𝑋 + 𝑍))) |
14 | 11, 4, 3, 12, 13 | syl13anc 1369 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑌 + 𝑋) + 𝑍) = (𝑌 + (𝑋 + 𝑍))) |
15 | 9, 10, 14 | 3eqtr3d 2773 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ⊆ wss 3944 ‘cfv 6549 (class class class)co 7419 Latclat 18426 Atomscatm 38862 HLchlt 38949 +𝑃cpadd 39395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-1st 7994 df-2nd 7995 df-proset 18290 df-poset 18308 df-plt 18325 df-lub 18341 df-glb 18342 df-join 18343 df-meet 18344 df-p0 18420 df-lat 18427 df-clat 18494 df-oposet 38775 df-ol 38777 df-oml 38778 df-covers 38865 df-ats 38866 df-atl 38897 df-cvlat 38921 df-hlat 38950 df-padd 39396 |
This theorem is referenced by: padd4N 39440 pmodl42N 39451 |
Copyright terms: Public domain | W3C validator |