Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapmeet Structured version   Visualization version   GIF version

Theorem pmapmeet 39302
Description: The projective map of a meet. (Contributed by NM, 25-Jan-2012.)
Hypotheses
Ref Expression
pmapmeet.b 𝐵 = (Base‘𝐾)
pmapmeet.m = (meet‘𝐾)
pmapmeet.a 𝐴 = (Atoms‘𝐾)
pmapmeet.p 𝑃 = (pmap‘𝐾)
Assertion
Ref Expression
pmapmeet ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑃‘(𝑋 𝑌)) = ((𝑃𝑋) ∩ (𝑃𝑌)))

Proof of Theorem pmapmeet
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2725 . . . 4 (glb‘𝐾) = (glb‘𝐾)
2 pmapmeet.m . . . 4 = (meet‘𝐾)
3 simp1 1133 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ HL)
4 simp2 1134 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
5 simp3 1135 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
61, 2, 3, 4, 5meetval 18382 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = ((glb‘𝐾)‘{𝑋, 𝑌}))
76fveq2d 6896 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑃‘(𝑋 𝑌)) = (𝑃‘((glb‘𝐾)‘{𝑋, 𝑌})))
8 prssi 4820 . . . 4 ((𝑋𝐵𝑌𝐵) → {𝑋, 𝑌} ⊆ 𝐵)
983adant1 1127 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → {𝑋, 𝑌} ⊆ 𝐵)
10 prnzg 4778 . . . 4 (𝑋𝐵 → {𝑋, 𝑌} ≠ ∅)
11103ad2ant2 1131 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → {𝑋, 𝑌} ≠ ∅)
12 pmapmeet.b . . . 4 𝐵 = (Base‘𝐾)
13 pmapmeet.p . . . 4 𝑃 = (pmap‘𝐾)
1412, 1, 13pmapglb 39299 . . 3 ((𝐾 ∈ HL ∧ {𝑋, 𝑌} ⊆ 𝐵 ∧ {𝑋, 𝑌} ≠ ∅) → (𝑃‘((glb‘𝐾)‘{𝑋, 𝑌})) = 𝑥 ∈ {𝑋, 𝑌} (𝑃𝑥))
153, 9, 11, 14syl3anc 1368 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑃‘((glb‘𝐾)‘{𝑋, 𝑌})) = 𝑥 ∈ {𝑋, 𝑌} (𝑃𝑥))
16 fveq2 6892 . . . 4 (𝑥 = 𝑋 → (𝑃𝑥) = (𝑃𝑋))
17 fveq2 6892 . . . 4 (𝑥 = 𝑌 → (𝑃𝑥) = (𝑃𝑌))
1816, 17iinxprg 5087 . . 3 ((𝑋𝐵𝑌𝐵) → 𝑥 ∈ {𝑋, 𝑌} (𝑃𝑥) = ((𝑃𝑋) ∩ (𝑃𝑌)))
19183adant1 1127 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝑥 ∈ {𝑋, 𝑌} (𝑃𝑥) = ((𝑃𝑋) ∩ (𝑃𝑌)))
207, 15, 193eqtrd 2769 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑃‘(𝑋 𝑌)) = ((𝑃𝑋) ∩ (𝑃𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1533  wcel 2098  wne 2930  cin 3938  wss 3939  c0 4318  {cpr 4626   ciin 4992  cfv 6543  (class class class)co 7416  Basecbs 17179  glbcglb 18301  meetcmee 18303  Atomscatm 38791  HLchlt 38878  pmapcpmap 39026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-poset 18304  df-lub 18337  df-glb 18338  df-join 18339  df-meet 18340  df-lat 18423  df-clat 18490  df-ats 38795  df-hlat 38879  df-pmap 39033
This theorem is referenced by:  hlmod1i  39385  poldmj1N  39457  pmapj2N  39458  pnonsingN  39462  psubclinN  39477  poml4N  39482  pl42lem1N  39508  pl42lem2N  39509
  Copyright terms: Public domain W3C validator
OSZAR »