Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapssbaN Structured version   Visualization version   GIF version

Theorem pmapssbaN 39363
Description: A weakening of pmapssat 39362 to shorten some proofs. (Contributed by NM, 7-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmapssba.b 𝐵 = (Base‘𝐾)
pmapssba.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmapssbaN ((𝐾𝐶𝑋𝐵) → (𝑀𝑋) ⊆ 𝐵)

Proof of Theorem pmapssbaN
StepHypRef Expression
1 pmapssba.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2725 . . 3 (Atoms‘𝐾) = (Atoms‘𝐾)
3 pmapssba.m . . 3 𝑀 = (pmap‘𝐾)
41, 2, 3pmapssat 39362 . 2 ((𝐾𝐶𝑋𝐵) → (𝑀𝑋) ⊆ (Atoms‘𝐾))
51, 2atssbase 38892 . 2 (Atoms‘𝐾) ⊆ 𝐵
64, 5sstrdi 3989 1 ((𝐾𝐶𝑋𝐵) → (𝑀𝑋) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wss 3944  cfv 6549  Basecbs 17183  Atomscatm 38865  pmapcpmap 39100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ats 38869  df-pmap 39107
This theorem is referenced by:  paddunN  39530
  Copyright terms: Public domain W3C validator
OSZAR »