![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pmtrffv | Structured version Visualization version GIF version |
Description: Mapping of a point under a transposition function. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
Ref | Expression |
---|---|
pmtrrn.t | ⊢ 𝑇 = (pmTrsp‘𝐷) |
pmtrrn.r | ⊢ 𝑅 = ran 𝑇 |
pmtrfrn.p | ⊢ 𝑃 = dom (𝐹 ∖ I ) |
Ref | Expression |
---|---|
pmtrffv | ⊢ ((𝐹 ∈ 𝑅 ∧ 𝑍 ∈ 𝐷) → (𝐹‘𝑍) = if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmtrrn.t | . . . . . 6 ⊢ 𝑇 = (pmTrsp‘𝐷) | |
2 | pmtrrn.r | . . . . . 6 ⊢ 𝑅 = ran 𝑇 | |
3 | pmtrfrn.p | . . . . . 6 ⊢ 𝑃 = dom (𝐹 ∖ I ) | |
4 | 1, 2, 3 | pmtrfrn 19413 | . . . . 5 ⊢ (𝐹 ∈ 𝑅 → ((𝐷 ∈ V ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝐹 = (𝑇‘𝑃))) |
5 | 4 | simprd 495 | . . . 4 ⊢ (𝐹 ∈ 𝑅 → 𝐹 = (𝑇‘𝑃)) |
6 | 5 | fveq1d 6899 | . . 3 ⊢ (𝐹 ∈ 𝑅 → (𝐹‘𝑍) = ((𝑇‘𝑃)‘𝑍)) |
7 | 6 | adantr 480 | . 2 ⊢ ((𝐹 ∈ 𝑅 ∧ 𝑍 ∈ 𝐷) → (𝐹‘𝑍) = ((𝑇‘𝑃)‘𝑍)) |
8 | 4 | simpld 494 | . . 3 ⊢ (𝐹 ∈ 𝑅 → (𝐷 ∈ V ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o)) |
9 | 1 | pmtrfv 19407 | . . 3 ⊢ (((𝐷 ∈ V ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑍 ∈ 𝐷) → ((𝑇‘𝑃)‘𝑍) = if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍)) |
10 | 8, 9 | sylan 579 | . 2 ⊢ ((𝐹 ∈ 𝑅 ∧ 𝑍 ∈ 𝐷) → ((𝑇‘𝑃)‘𝑍) = if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍)) |
11 | 7, 10 | eqtrd 2768 | 1 ⊢ ((𝐹 ∈ 𝑅 ∧ 𝑍 ∈ 𝐷) → (𝐹‘𝑍) = if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 Vcvv 3471 ∖ cdif 3944 ⊆ wss 3947 ifcif 4529 {csn 4629 ∪ cuni 4908 class class class wbr 5148 I cid 5575 dom cdm 5678 ran crn 5679 ‘cfv 6548 2oc2o 8481 ≈ cen 8961 pmTrspcpmtr 19396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-om 7871 df-1o 8487 df-2o 8488 df-en 8965 df-pmtr 19397 |
This theorem is referenced by: pmtrfinv 19416 pmtrdifellem3 19433 pmtrdifellem4 19434 psgnunilem1 19448 |
Copyright terms: Public domain | W3C validator |