![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prstcnid | Structured version Visualization version GIF version |
Description: Components other than Hom and comp are unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) |
Ref | Expression |
---|---|
prstcnid.c | ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) |
prstcnid.k | ⊢ (𝜑 → 𝐾 ∈ Proset ) |
prstcnid.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
prstcnid.no | ⊢ (𝐸‘ndx) ≠ (comp‘ndx) |
prstcnid.nh | ⊢ (𝐸‘ndx) ≠ (Hom ‘ndx) |
Ref | Expression |
---|---|
prstcnid | ⊢ (𝜑 → (𝐸‘𝐾) = (𝐸‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prstcnid.e | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
2 | prstcnid.nh | . . 3 ⊢ (𝐸‘ndx) ≠ (Hom ‘ndx) | |
3 | 1, 2 | setsnid 17172 | . 2 ⊢ (𝐸‘𝐾) = (𝐸‘(𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉)) |
4 | prstcnid.c | . . 3 ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) | |
5 | prstcnid.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ Proset ) | |
6 | prstcnid.no | . . 3 ⊢ (𝐸‘ndx) ≠ (comp‘ndx) | |
7 | 4, 5, 1, 6 | prstcnidlem 48062 | . 2 ⊢ (𝜑 → (𝐸‘𝐶) = (𝐸‘(𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉))) |
8 | 3, 7 | eqtr4id 2787 | 1 ⊢ (𝜑 → (𝐸‘𝐾) = (𝐸‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ≠ wne 2936 {csn 4625 〈cop 4631 × cxp 5671 ‘cfv 6543 (class class class)co 7415 1oc1o 8474 sSet csts 17126 Slot cslot 17144 ndxcnx 17156 lecple 17234 Hom chom 17238 compcco 17239 Proset cproset 18279 ProsetToCatcprstc 48059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-sbc 3776 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-res 5685 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7418 df-oprab 7419 df-mpo 7420 df-sets 17127 df-slot 17145 df-prstc 48060 |
This theorem is referenced by: prstcbas 48064 prstcleval 48065 prstclevalOLD 48066 prstcocval 48068 prstcocvalOLD 48069 |
Copyright terms: Public domain | W3C validator |