Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubclsubN Structured version   Visualization version   GIF version

Theorem psubclsubN 39417
Description: A closed projective subspace is a projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
psubclsub.s 𝑆 = (PSubSp‘𝐾)
psubclsub.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
psubclsubN ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋𝑆)

Proof of Theorem psubclsubN
StepHypRef Expression
1 eqid 2727 . . 3 (⊥𝑃𝐾) = (⊥𝑃𝐾)
2 psubclsub.c . . 3 𝐶 = (PSubCl‘𝐾)
31, 2psubcli2N 39416 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐶) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋)
4 eqid 2727 . . . . . . 7 (Atoms‘𝐾) = (Atoms‘𝐾)
54, 1, 2psubcliN 39415 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐶) → (𝑋 ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋))
65simpld 493 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋 ⊆ (Atoms‘𝐾))
7 psubclsub.s . . . . . 6 𝑆 = (PSubSp‘𝐾)
84, 7, 1polsubN 39384 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾)) → ((⊥𝑃𝐾)‘𝑋) ∈ 𝑆)
96, 8syldan 589 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶) → ((⊥𝑃𝐾)‘𝑋) ∈ 𝑆)
104, 7psubssat 39231 . . . 4 ((𝐾 ∈ HL ∧ ((⊥𝑃𝐾)‘𝑋) ∈ 𝑆) → ((⊥𝑃𝐾)‘𝑋) ⊆ (Atoms‘𝐾))
119, 10syldan 589 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶) → ((⊥𝑃𝐾)‘𝑋) ⊆ (Atoms‘𝐾))
124, 7, 1polsubN 39384 . . 3 ((𝐾 ∈ HL ∧ ((⊥𝑃𝐾)‘𝑋) ⊆ (Atoms‘𝐾)) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) ∈ 𝑆)
1311, 12syldan 589 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐶) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) ∈ 𝑆)
143, 13eqeltrrd 2829 1 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wss 3947  cfv 6551  Atomscatm 38739  HLchlt 38826  PSubSpcpsubsp 38973  𝑃cpolN 39379  PSubClcpscN 39411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-iun 5000  df-iin 5001  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-proset 18292  df-poset 18310  df-lub 18343  df-glb 18344  df-join 18345  df-meet 18346  df-p1 18423  df-lat 18429  df-clat 18496  df-oposet 38652  df-ol 38654  df-oml 38655  df-ats 38743  df-atl 38774  df-cvlat 38798  df-hlat 38827  df-psubsp 38980  df-pmap 38981  df-polarityN 39380  df-psubclN 39412
This theorem is referenced by:  pclfinclN  39427
  Copyright terms: Public domain W3C validator
OSZAR »