![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rankidb | Structured version Visualization version GIF version |
Description: Identity law for the rank function. (Contributed by NM, 3-Oct-2003.) (Revised by Mario Carneiro, 22-Mar-2013.) |
Ref | Expression |
---|---|
rankidb | ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankwflemb 9816 | . . 3 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥)) | |
2 | nfcv 2892 | . . . . . 6 ⊢ Ⅎ𝑥𝑅1 | |
3 | nfrab1 3439 | . . . . . . . 8 ⊢ Ⅎ𝑥{𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} | |
4 | 3 | nfint 4959 | . . . . . . 7 ⊢ Ⅎ𝑥∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} |
5 | 4 | nfsuc 6441 | . . . . . 6 ⊢ Ⅎ𝑥 suc ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} |
6 | 2, 5 | nffv 6904 | . . . . 5 ⊢ Ⅎ𝑥(𝑅1‘suc ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}) |
7 | 6 | nfel2 2911 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ (𝑅1‘suc ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}) |
8 | suceq 6435 | . . . . . 6 ⊢ (𝑥 = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} → suc 𝑥 = suc ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}) | |
9 | 8 | fveq2d 6898 | . . . . 5 ⊢ (𝑥 = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} → (𝑅1‘suc 𝑥) = (𝑅1‘suc ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})) |
10 | 9 | eleq2d 2811 | . . . 4 ⊢ (𝑥 = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} → (𝐴 ∈ (𝑅1‘suc 𝑥) ↔ 𝐴 ∈ (𝑅1‘suc ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}))) |
11 | 7, 10 | onminsb 7796 | . . 3 ⊢ (∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥) → 𝐴 ∈ (𝑅1‘suc ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})) |
12 | 1, 11 | sylbi 216 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})) |
13 | rankvalb 9820 | . . . 4 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}) | |
14 | suceq 6435 | . . . 4 ⊢ ((rank‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} → suc (rank‘𝐴) = suc ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → suc (rank‘𝐴) = suc ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}) |
16 | 15 | fveq2d 6898 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (𝑅1‘suc (rank‘𝐴)) = (𝑅1‘suc ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})) |
17 | 12, 16 | eleqtrrd 2828 | 1 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∃wrex 3060 {crab 3419 ∪ cuni 4908 ∩ cint 4949 “ cima 5680 Oncon0 6369 suc csuc 6371 ‘cfv 6547 𝑅1cr1 9785 rankcrnk 9786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-ov 7420 df-om 7870 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-r1 9787 df-rank 9788 |
This theorem is referenced by: rankdmr1 9824 rankr1ag 9825 sswf 9831 uniwf 9842 rankonidlem 9851 rankid 9856 dfac12lem2 10167 aomclem4 42546 |
Copyright terms: Public domain | W3C validator |