MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankr1c Structured version   Visualization version   GIF version

Theorem rankr1c 9852
Description: A relationship between the rank function and the cumulative hierarchy of sets function 𝑅1. Proposition 9.15(2) of [TakeutiZaring] p. 79. (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankr1c (𝐴 (𝑅1 “ On) → (𝐵 = (rank‘𝐴) ↔ (¬ 𝐴 ∈ (𝑅1𝐵) ∧ 𝐴 ∈ (𝑅1‘suc 𝐵))))

Proof of Theorem rankr1c
StepHypRef Expression
1 id 22 . . . 4 (𝐵 = (rank‘𝐴) → 𝐵 = (rank‘𝐴))
2 rankdmr1 9832 . . . 4 (rank‘𝐴) ∈ dom 𝑅1
31, 2eqeltrdi 2837 . . 3 (𝐵 = (rank‘𝐴) → 𝐵 ∈ dom 𝑅1)
43a1i 11 . 2 (𝐴 (𝑅1 “ On) → (𝐵 = (rank‘𝐴) → 𝐵 ∈ dom 𝑅1))
5 elfvdm 6939 . . . . 5 (𝐴 ∈ (𝑅1‘suc 𝐵) → suc 𝐵 ∈ dom 𝑅1)
6 r1funlim 9797 . . . . . . 7 (Fun 𝑅1 ∧ Lim dom 𝑅1)
76simpri 484 . . . . . 6 Lim dom 𝑅1
8 limsuc 7859 . . . . . 6 (Lim dom 𝑅1 → (𝐵 ∈ dom 𝑅1 ↔ suc 𝐵 ∈ dom 𝑅1))
97, 8ax-mp 5 . . . . 5 (𝐵 ∈ dom 𝑅1 ↔ suc 𝐵 ∈ dom 𝑅1)
105, 9sylibr 233 . . . 4 (𝐴 ∈ (𝑅1‘suc 𝐵) → 𝐵 ∈ dom 𝑅1)
1110adantl 480 . . 3 ((¬ 𝐴 ∈ (𝑅1𝐵) ∧ 𝐴 ∈ (𝑅1‘suc 𝐵)) → 𝐵 ∈ dom 𝑅1)
1211a1i 11 . 2 (𝐴 (𝑅1 “ On) → ((¬ 𝐴 ∈ (𝑅1𝐵) ∧ 𝐴 ∈ (𝑅1‘suc 𝐵)) → 𝐵 ∈ dom 𝑅1))
13 eqss 3997 . . . 4 (𝐵 = (rank‘𝐴) ↔ (𝐵 ⊆ (rank‘𝐴) ∧ (rank‘𝐴) ⊆ 𝐵))
14 rankr1clem 9851 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (¬ 𝐴 ∈ (𝑅1𝐵) ↔ 𝐵 ⊆ (rank‘𝐴)))
15 rankr1ag 9833 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ suc 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝐴) ∈ suc 𝐵))
169, 15sylan2b 592 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝐴) ∈ suc 𝐵))
17 rankon 9826 . . . . . . 7 (rank‘𝐴) ∈ On
18 limord 6434 . . . . . . . . . 10 (Lim dom 𝑅1 → Ord dom 𝑅1)
197, 18ax-mp 5 . . . . . . . . 9 Ord dom 𝑅1
20 ordelon 6398 . . . . . . . . 9 ((Ord dom 𝑅1𝐵 ∈ dom 𝑅1) → 𝐵 ∈ On)
2119, 20mpan 688 . . . . . . . 8 (𝐵 ∈ dom 𝑅1𝐵 ∈ On)
2221adantl 480 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → 𝐵 ∈ On)
23 onsssuc 6464 . . . . . . 7 (((rank‘𝐴) ∈ On ∧ 𝐵 ∈ On) → ((rank‘𝐴) ⊆ 𝐵 ↔ (rank‘𝐴) ∈ suc 𝐵))
2417, 22, 23sylancr 585 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → ((rank‘𝐴) ⊆ 𝐵 ↔ (rank‘𝐴) ∈ suc 𝐵))
2516, 24bitr4d 281 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝐴) ⊆ 𝐵))
2614, 25anbi12d 630 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → ((¬ 𝐴 ∈ (𝑅1𝐵) ∧ 𝐴 ∈ (𝑅1‘suc 𝐵)) ↔ (𝐵 ⊆ (rank‘𝐴) ∧ (rank‘𝐴) ⊆ 𝐵)))
2713, 26bitr4id 289 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐵 = (rank‘𝐴) ↔ (¬ 𝐴 ∈ (𝑅1𝐵) ∧ 𝐴 ∈ (𝑅1‘suc 𝐵))))
2827ex 411 . 2 (𝐴 (𝑅1 “ On) → (𝐵 ∈ dom 𝑅1 → (𝐵 = (rank‘𝐴) ↔ (¬ 𝐴 ∈ (𝑅1𝐵) ∧ 𝐴 ∈ (𝑅1‘suc 𝐵)))))
294, 12, 28pm5.21ndd 378 1 (𝐴 (𝑅1 “ On) → (𝐵 = (rank‘𝐴) ↔ (¬ 𝐴 ∈ (𝑅1𝐵) ∧ 𝐴 ∈ (𝑅1‘suc 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wss 3949   cuni 4912  dom cdm 5682  cima 5685  Ord word 6373  Oncon0 6374  Lim wlim 6375  suc csuc 6376  Fun wfun 6547  cfv 6553  𝑅1cr1 9793  rankcrnk 9794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7429  df-om 7877  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-r1 9795  df-rank 9796
This theorem is referenced by:  rankidn  9853  rankpwi  9854  rankr1g  9863  r1tskina  10813
  Copyright terms: Public domain W3C validator
OSZAR »