![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ranksnb | Structured version Visualization version GIF version |
Description: The rank of a singleton. Theorem 15.17(v) of [Monk1] p. 112. (Contributed by Mario Carneiro, 10-Jun-2013.) |
Ref | Expression |
---|---|
ranksnb | ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘{𝐴}) = suc (rank‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6897 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (rank‘𝑦) = (rank‘𝐴)) | |
2 | 1 | eleq1d 2814 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((rank‘𝑦) ∈ 𝑥 ↔ (rank‘𝐴) ∈ 𝑥)) |
3 | 2 | ralsng 4678 | . . . 4 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (∀𝑦 ∈ {𝐴} (rank‘𝑦) ∈ 𝑥 ↔ (rank‘𝐴) ∈ 𝑥)) |
4 | 3 | rabbidv 3437 | . . 3 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → {𝑥 ∈ On ∣ ∀𝑦 ∈ {𝐴} (rank‘𝑦) ∈ 𝑥} = {𝑥 ∈ On ∣ (rank‘𝐴) ∈ 𝑥}) |
5 | 4 | inteqd 4954 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ {𝐴} (rank‘𝑦) ∈ 𝑥} = ∩ {𝑥 ∈ On ∣ (rank‘𝐴) ∈ 𝑥}) |
6 | snwf 9832 | . . 3 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → {𝐴} ∈ ∪ (𝑅1 “ On)) | |
7 | rankval3b 9849 | . . 3 ⊢ ({𝐴} ∈ ∪ (𝑅1 “ On) → (rank‘{𝐴}) = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ {𝐴} (rank‘𝑦) ∈ 𝑥}) | |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘{𝐴}) = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ {𝐴} (rank‘𝑦) ∈ 𝑥}) |
9 | rankon 9818 | . . 3 ⊢ (rank‘𝐴) ∈ On | |
10 | onsucmin 7824 | . . 3 ⊢ ((rank‘𝐴) ∈ On → suc (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ (rank‘𝐴) ∈ 𝑥}) | |
11 | 9, 10 | mp1i 13 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → suc (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ (rank‘𝐴) ∈ 𝑥}) |
12 | 5, 8, 11 | 3eqtr4d 2778 | 1 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘{𝐴}) = suc (rank‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ∀wral 3058 {crab 3429 {csn 4629 ∪ cuni 4908 ∩ cint 4949 “ cima 5681 Oncon0 6369 suc csuc 6371 ‘cfv 6548 𝑅1cr1 9785 rankcrnk 9786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-om 7871 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-r1 9787 df-rank 9788 |
This theorem is referenced by: rankprb 9874 ranksn 9877 rankcf 10800 rankaltopb 35575 |
Copyright terms: Public domain | W3C validator |