![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rdglimg | Structured version Visualization version GIF version |
Description: The value of the recursive definition generator at a limit ordinal. (Contributed by NM, 16-Nov-2014.) |
Ref | Expression |
---|---|
rdglimg | ⊢ ((𝐵 ∈ dom rec(𝐹, 𝐴) ∧ Lim 𝐵) → (rec(𝐹, 𝐴)‘𝐵) = ∪ (rec(𝐹, 𝐴) “ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2727 | . 2 ⊢ (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥))))) = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥))))) | |
2 | rdgvalg 8433 | . 2 ⊢ (𝑦 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘𝑦) = ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥)))))‘(rec(𝐹, 𝐴) ↾ 𝑦))) | |
3 | rdgseg 8436 | . 2 ⊢ (𝑦 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴) ↾ 𝑦) ∈ V) | |
4 | rdgfun 8430 | . . 3 ⊢ Fun rec(𝐹, 𝐴) | |
5 | funfn 6577 | . . 3 ⊢ (Fun rec(𝐹, 𝐴) ↔ rec(𝐹, 𝐴) Fn dom rec(𝐹, 𝐴)) | |
6 | 4, 5 | mpbi 229 | . 2 ⊢ rec(𝐹, 𝐴) Fn dom rec(𝐹, 𝐴) |
7 | rdgdmlim 8431 | . . 3 ⊢ Lim dom rec(𝐹, 𝐴) | |
8 | limord 6423 | . . 3 ⊢ (Lim dom rec(𝐹, 𝐴) → Ord dom rec(𝐹, 𝐴)) | |
9 | 7, 8 | ax-mp 5 | . 2 ⊢ Ord dom rec(𝐹, 𝐴) |
10 | 1, 2, 3, 6, 9 | tz7.44-3 8422 | 1 ⊢ ((𝐵 ∈ dom rec(𝐹, 𝐴) ∧ Lim 𝐵) → (rec(𝐹, 𝐴)‘𝐵) = ∪ (rec(𝐹, 𝐴) “ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3469 ∅c0 4318 ifcif 4524 ∪ cuni 4903 ↦ cmpt 5225 dom cdm 5672 ran crn 5673 “ cima 5675 Ord word 6362 Lim wlim 6364 Fun wfun 6536 Fn wfn 6537 ‘cfv 6542 reccrdg 8423 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 |
This theorem is referenced by: rdglim 8440 r1limg 9788 |
Copyright terms: Public domain | W3C validator |