![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resf1st | Structured version Visualization version GIF version |
Description: Value of the functor restriction operator on objects. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
resf1st.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
resf1st.h | ⊢ (𝜑 → 𝐻 ∈ 𝑊) |
resf1st.s | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
Ref | Expression |
---|---|
resf1st | ⊢ (𝜑 → (1st ‘(𝐹 ↾f 𝐻)) = ((1st ‘𝐹) ↾ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resf1st.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
2 | resf1st.h | . . . 4 ⊢ (𝜑 → 𝐻 ∈ 𝑊) | |
3 | 1, 2 | resfval 17877 | . . 3 ⊢ (𝜑 → (𝐹 ↾f 𝐻) = 〈((1st ‘𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))〉) |
4 | 3 | fveq2d 6901 | . 2 ⊢ (𝜑 → (1st ‘(𝐹 ↾f 𝐻)) = (1st ‘〈((1st ‘𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))〉)) |
5 | fvex 6910 | . . . 4 ⊢ (1st ‘𝐹) ∈ V | |
6 | 5 | resex 6033 | . . 3 ⊢ ((1st ‘𝐹) ↾ dom dom 𝐻) ∈ V |
7 | dmexg 7909 | . . . 4 ⊢ (𝐻 ∈ 𝑊 → dom 𝐻 ∈ V) | |
8 | mptexg 7233 | . . . 4 ⊢ (dom 𝐻 ∈ V → (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧))) ∈ V) | |
9 | 2, 7, 8 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧))) ∈ V) |
10 | op1stg 8005 | . . 3 ⊢ ((((1st ‘𝐹) ↾ dom dom 𝐻) ∈ V ∧ (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧))) ∈ V) → (1st ‘〈((1st ‘𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))〉) = ((1st ‘𝐹) ↾ dom dom 𝐻)) | |
11 | 6, 9, 10 | sylancr 586 | . 2 ⊢ (𝜑 → (1st ‘〈((1st ‘𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))〉) = ((1st ‘𝐹) ↾ dom dom 𝐻)) |
12 | resf1st.s | . . . . . 6 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
13 | 12 | fndmd 6659 | . . . . 5 ⊢ (𝜑 → dom 𝐻 = (𝑆 × 𝑆)) |
14 | 13 | dmeqd 5908 | . . . 4 ⊢ (𝜑 → dom dom 𝐻 = dom (𝑆 × 𝑆)) |
15 | dmxpid 5932 | . . . 4 ⊢ dom (𝑆 × 𝑆) = 𝑆 | |
16 | 14, 15 | eqtrdi 2784 | . . 3 ⊢ (𝜑 → dom dom 𝐻 = 𝑆) |
17 | 16 | reseq2d 5985 | . 2 ⊢ (𝜑 → ((1st ‘𝐹) ↾ dom dom 𝐻) = ((1st ‘𝐹) ↾ 𝑆)) |
18 | 4, 11, 17 | 3eqtrd 2772 | 1 ⊢ (𝜑 → (1st ‘(𝐹 ↾f 𝐻)) = ((1st ‘𝐹) ↾ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 Vcvv 3471 〈cop 4635 ↦ cmpt 5231 × cxp 5676 dom cdm 5678 ↾ cres 5680 Fn wfn 6543 ‘cfv 6548 (class class class)co 7420 1st c1st 7991 2nd c2nd 7992 ↾f cresf 17842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-1st 7993 df-resf 17846 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |