Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  restclssep Structured version   Visualization version   GIF version

Theorem restclssep 47934
Description: Two disjoint closed sets in a subspace topology are separated in the original topology. (Contributed by Zhi Wang, 2-Sep-2024.)
Hypotheses
Ref Expression
restcls2.1 (𝜑𝐽 ∈ Top)
restcls2.2 (𝜑𝑋 = 𝐽)
restcls2.3 (𝜑𝑌𝑋)
restcls2.4 (𝜑𝐾 = (𝐽t 𝑌))
restcls2.5 (𝜑𝑆 ∈ (Clsd‘𝐾))
restclsseplem.6 (𝜑 → (𝑆𝑇) = ∅)
restclssep.7 (𝜑𝑇 ∈ (Clsd‘𝐾))
Assertion
Ref Expression
restclssep (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅))

Proof of Theorem restclssep
StepHypRef Expression
1 incom 4201 . . 3 (((cls‘𝐽)‘𝑇) ∩ 𝑆) = (𝑆 ∩ ((cls‘𝐽)‘𝑇))
2 restcls2.1 . . . 4 (𝜑𝐽 ∈ Top)
3 restcls2.2 . . . 4 (𝜑𝑋 = 𝐽)
4 restcls2.3 . . . 4 (𝜑𝑌𝑋)
5 restcls2.4 . . . 4 (𝜑𝐾 = (𝐽t 𝑌))
6 restclssep.7 . . . 4 (𝜑𝑇 ∈ (Clsd‘𝐾))
7 incom 4201 . . . . 5 (𝑆𝑇) = (𝑇𝑆)
8 restclsseplem.6 . . . . 5 (𝜑 → (𝑆𝑇) = ∅)
97, 8eqtr3id 2782 . . . 4 (𝜑 → (𝑇𝑆) = ∅)
10 restcls2.5 . . . . 5 (𝜑𝑆 ∈ (Clsd‘𝐾))
112, 3, 4, 5, 10restcls2lem 47931 . . . 4 (𝜑𝑆𝑌)
122, 3, 4, 5, 6, 9, 11restclsseplem 47933 . . 3 (𝜑 → (((cls‘𝐽)‘𝑇) ∩ 𝑆) = ∅)
131, 12eqtr3id 2782 . 2 (𝜑 → (𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅)
142, 3, 4, 5, 6restcls2lem 47931 . . 3 (𝜑𝑇𝑌)
152, 3, 4, 5, 10, 8, 14restclsseplem 47933 . 2 (𝜑 → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)
1613, 15jca 511 1 (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  cin 3946  wss 3947  c0 4323   cuni 4908  cfv 6548  (class class class)co 7420  t crest 17402  Topctop 22808  Clsdccld 22933  clsccl 22935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-en 8965  df-fin 8968  df-fi 9435  df-rest 17404  df-topgen 17425  df-top 22809  df-topon 22826  df-bases 22862  df-cld 22936  df-cls 22938
This theorem is referenced by:  iscnrm3l  47970
  Copyright terms: Public domain W3C validator
OSZAR »