![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > resubcan2 | Structured version Visualization version GIF version |
Description: Cancellation law for real subtraction. Compare subcan2 11523. (Contributed by Steven Nguyen, 8-Jan-2023.) |
Ref | Expression |
---|---|
resubcan2 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐶) = (𝐵 −ℝ 𝐶) ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 483 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 −ℝ 𝐶) = (𝐵 −ℝ 𝐶)) → (𝐴 −ℝ 𝐶) = (𝐵 −ℝ 𝐶)) | |
2 | simpl1 1188 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 −ℝ 𝐶) = (𝐵 −ℝ 𝐶)) → 𝐴 ∈ ℝ) | |
3 | simpl3 1190 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 −ℝ 𝐶) = (𝐵 −ℝ 𝐶)) → 𝐶 ∈ ℝ) | |
4 | simpl2 1189 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 −ℝ 𝐶) = (𝐵 −ℝ 𝐶)) → 𝐵 ∈ ℝ) | |
5 | rersubcl 41964 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 −ℝ 𝐶) ∈ ℝ) | |
6 | 4, 3, 5 | syl2anc 582 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 −ℝ 𝐶) = (𝐵 −ℝ 𝐶)) → (𝐵 −ℝ 𝐶) ∈ ℝ) |
7 | 2, 3, 6 | resubaddd 41966 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 −ℝ 𝐶) = (𝐵 −ℝ 𝐶)) → ((𝐴 −ℝ 𝐶) = (𝐵 −ℝ 𝐶) ↔ (𝐶 + (𝐵 −ℝ 𝐶)) = 𝐴)) |
8 | 1, 7 | mpbid 231 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 −ℝ 𝐶) = (𝐵 −ℝ 𝐶)) → (𝐶 + (𝐵 −ℝ 𝐶)) = 𝐴) |
9 | repncan3 41969 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 + (𝐵 −ℝ 𝐶)) = 𝐵) | |
10 | 3, 4, 9 | syl2anc 582 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 −ℝ 𝐶) = (𝐵 −ℝ 𝐶)) → (𝐶 + (𝐵 −ℝ 𝐶)) = 𝐵) |
11 | 8, 10 | eqtr3d 2770 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 −ℝ 𝐶) = (𝐵 −ℝ 𝐶)) → 𝐴 = 𝐵) |
12 | 11 | ex 411 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐶) = (𝐵 −ℝ 𝐶) → 𝐴 = 𝐵)) |
13 | oveq1 7433 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 −ℝ 𝐶) = (𝐵 −ℝ 𝐶)) | |
14 | 12, 13 | impbid1 224 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐶) = (𝐵 −ℝ 𝐶) ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 (class class class)co 7426 ℝcr 11145 + caddc 11149 −ℝ cresub 41951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-resscn 11203 ax-addrcl 11207 ax-addass 11211 ax-rnegex 11217 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-po 5594 df-so 5595 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-pnf 11288 df-mnf 11289 df-ltxr 11291 df-resub 41952 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |