![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rfovfvd | Structured version Visualization version GIF version |
Description: Value of the operator, (𝐴𝑂𝐵), which maps between relations and functions for relations between base sets, 𝐴 and 𝐵, and relation 𝑅. (Contributed by RP, 25-Apr-2021.) |
Ref | Expression |
---|---|
rfovd.rf | ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥 ∈ 𝑎 ↦ {𝑦 ∈ 𝑏 ∣ 𝑥𝑟𝑦}))) |
rfovd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
rfovd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
rfovfvd.r | ⊢ (𝜑 → 𝑅 ∈ 𝒫 (𝐴 × 𝐵)) |
rfovfvd.f | ⊢ 𝐹 = (𝐴𝑂𝐵) |
Ref | Expression |
---|---|
rfovfvd | ⊢ (𝜑 → (𝐹‘𝑅) = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑅𝑦})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rfovfvd.f | . . 3 ⊢ 𝐹 = (𝐴𝑂𝐵) | |
2 | rfovd.rf | . . . 4 ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥 ∈ 𝑎 ↦ {𝑦 ∈ 𝑏 ∣ 𝑥𝑟𝑦}))) | |
3 | rfovd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | rfovd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
5 | 2, 3, 4 | rfovd 43513 | . . 3 ⊢ (𝜑 → (𝐴𝑂𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}))) |
6 | 1, 5 | eqtrid 2777 | . 2 ⊢ (𝜑 → 𝐹 = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}))) |
7 | breq 5150 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝑥𝑟𝑦 ↔ 𝑥𝑅𝑦)) | |
8 | 7 | rabbidv 3427 | . . . 4 ⊢ (𝑟 = 𝑅 → {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦} = {𝑦 ∈ 𝐵 ∣ 𝑥𝑅𝑦}) |
9 | 8 | mpteq2dv 5250 | . . 3 ⊢ (𝑟 = 𝑅 → (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}) = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑅𝑦})) |
10 | 9 | adantl 480 | . 2 ⊢ ((𝜑 ∧ 𝑟 = 𝑅) → (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}) = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑅𝑦})) |
11 | rfovfvd.r | . 2 ⊢ (𝜑 → 𝑅 ∈ 𝒫 (𝐴 × 𝐵)) | |
12 | 3 | mptexd 7234 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑅𝑦}) ∈ V) |
13 | 6, 10, 11, 12 | fvmptd 7009 | 1 ⊢ (𝜑 → (𝐹‘𝑅) = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑅𝑦})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 {crab 3419 Vcvv 3463 𝒫 cpw 4603 class class class wbr 5148 ↦ cmpt 5231 × cxp 5675 ‘cfv 6547 (class class class)co 7417 ∈ cmpo 7419 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-ov 7420 df-oprab 7421 df-mpo 7422 |
This theorem is referenced by: rfovfvfvd 43515 |
Copyright terms: Public domain | W3C validator |