![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rlmval | Structured version Visualization version GIF version |
Description: Value of the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
Ref | Expression |
---|---|
rlmval | ⊢ (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6897 | . . . 4 ⊢ (𝑎 = 𝑊 → (subringAlg ‘𝑎) = (subringAlg ‘𝑊)) | |
2 | fveq2 6897 | . . . 4 ⊢ (𝑎 = 𝑊 → (Base‘𝑎) = (Base‘𝑊)) | |
3 | 1, 2 | fveq12d 6904 | . . 3 ⊢ (𝑎 = 𝑊 → ((subringAlg ‘𝑎)‘(Base‘𝑎)) = ((subringAlg ‘𝑊)‘(Base‘𝑊))) |
4 | df-rgmod 21059 | . . 3 ⊢ ringLMod = (𝑎 ∈ V ↦ ((subringAlg ‘𝑎)‘(Base‘𝑎))) | |
5 | fvex 6910 | . . 3 ⊢ ((subringAlg ‘𝑊)‘(Base‘𝑊)) ∈ V | |
6 | 3, 4, 5 | fvmpt 7005 | . 2 ⊢ (𝑊 ∈ V → (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊))) |
7 | 0fv 6941 | . . . 4 ⊢ (∅‘(Base‘𝑊)) = ∅ | |
8 | 7 | eqcomi 2737 | . . 3 ⊢ ∅ = (∅‘(Base‘𝑊)) |
9 | fvprc 6889 | . . 3 ⊢ (¬ 𝑊 ∈ V → (ringLMod‘𝑊) = ∅) | |
10 | fvprc 6889 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (subringAlg ‘𝑊) = ∅) | |
11 | 10 | fveq1d 6899 | . . 3 ⊢ (¬ 𝑊 ∈ V → ((subringAlg ‘𝑊)‘(Base‘𝑊)) = (∅‘(Base‘𝑊))) |
12 | 8, 9, 11 | 3eqtr4a 2794 | . 2 ⊢ (¬ 𝑊 ∈ V → (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊))) |
13 | 6, 12 | pm2.61i 182 | 1 ⊢ (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1534 ∈ wcel 2099 Vcvv 3471 ∅c0 4323 ‘cfv 6548 Basecbs 17180 subringAlg csra 21056 ringLModcrglmod 21057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6500 df-fun 6550 df-fv 6556 df-rgmod 21059 |
This theorem is referenced by: rlmval2 21085 rlmbas 21086 rlmplusg 21087 rlm0 21088 rlmmulr 21090 rlmsca 21091 rlmsca2 21092 rlmvsca 21093 rlmtopn 21094 rlmds 21095 rlmlmod 21096 frlmip 21712 rlmassa 21804 rlmnlm 24618 rlmbn 25302 rrxprds 25330 rlmdim 33307 rgmoddimOLD 33308 extdgid 33352 |
Copyright terms: Public domain | W3C validator |