![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnmptssdf | Structured version Visualization version GIF version |
Description: The range of a function given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
rnmptssdf.1 | ⊢ Ⅎ𝑥𝜑 |
rnmptssdf.2 | ⊢ Ⅎ𝑥𝐶 |
rnmptssdf.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
rnmptssdf.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
Ref | Expression |
---|---|
rnmptssdf | ⊢ (𝜑 → ran 𝐹 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnmptssdf.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | rnmptssdf.4 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
3 | 1, 2 | ralrimia 3252 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) |
4 | rnmptssdf.2 | . . 3 ⊢ Ⅎ𝑥𝐶 | |
5 | rnmptssdf.3 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
6 | 4, 5 | rnmptssf 44623 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) |
7 | 3, 6 | syl 17 | 1 ⊢ (𝜑 → ran 𝐹 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 Ⅎwnf 1778 ∈ wcel 2099 Ⅎwnfc 2879 ∀wral 3058 ⊆ wss 3947 ↦ cmpt 5231 ran crn 5679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-fun 6550 df-fn 6551 df-f 6552 |
This theorem is referenced by: rnmptss2 44633 supminfrnmpt 44827 supminfxrrnmpt 44853 |
Copyright terms: Public domain | W3C validator |