![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > saldifcl2 | Structured version Visualization version GIF version |
Description: The difference of two elements of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
saldifcl2 | ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∖ 𝐹) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indif2 4265 | . . . 4 ⊢ (𝐸 ∩ (∪ 𝑆 ∖ 𝐹)) = ((𝐸 ∩ ∪ 𝑆) ∖ 𝐹) | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∩ (∪ 𝑆 ∖ 𝐹)) = ((𝐸 ∩ ∪ 𝑆) ∖ 𝐹)) |
3 | elssuni 4935 | . . . . . 6 ⊢ (𝐸 ∈ 𝑆 → 𝐸 ⊆ ∪ 𝑆) | |
4 | dfss2 3957 | . . . . . 6 ⊢ (𝐸 ⊆ ∪ 𝑆 ↔ (𝐸 ∩ ∪ 𝑆) = 𝐸) | |
5 | 3, 4 | sylib 217 | . . . . 5 ⊢ (𝐸 ∈ 𝑆 → (𝐸 ∩ ∪ 𝑆) = 𝐸) |
6 | 5 | difeq1d 4113 | . . . 4 ⊢ (𝐸 ∈ 𝑆 → ((𝐸 ∩ ∪ 𝑆) ∖ 𝐹) = (𝐸 ∖ 𝐹)) |
7 | 6 | 3ad2ant2 1131 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → ((𝐸 ∩ ∪ 𝑆) ∖ 𝐹) = (𝐸 ∖ 𝐹)) |
8 | 2, 7 | eqtr2d 2766 | . 2 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∖ 𝐹) = (𝐸 ∩ (∪ 𝑆 ∖ 𝐹))) |
9 | simp1 1133 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → 𝑆 ∈ SAlg) | |
10 | simp2 1134 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → 𝐸 ∈ 𝑆) | |
11 | saldifcl 45770 | . . . 4 ⊢ ((𝑆 ∈ SAlg ∧ 𝐹 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐹) ∈ 𝑆) | |
12 | 11 | 3adant2 1128 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐹) ∈ 𝑆) |
13 | salincl 45775 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ (∪ 𝑆 ∖ 𝐹) ∈ 𝑆) → (𝐸 ∩ (∪ 𝑆 ∖ 𝐹)) ∈ 𝑆) | |
14 | 9, 10, 12, 13 | syl3anc 1368 | . 2 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∩ (∪ 𝑆 ∖ 𝐹)) ∈ 𝑆) |
15 | 8, 14 | eqeltrd 2825 | 1 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∖ 𝐹) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∖ cdif 3936 ∩ cin 3938 ⊆ wss 3939 ∪ cuni 4903 SAlgcsalg 45759 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-inf2 9664 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7419 df-om 7869 df-2nd 7992 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-salg 45760 |
This theorem is referenced by: meassle 45914 meaunle 45915 meaiunlelem 45919 meadif 45930 meaiuninclem 45931 meaiininclem 45937 hoimbllem 46081 |
Copyright terms: Public domain | W3C validator |