![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp1l1 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp1l1 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1188 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜑) | |
2 | 1 | 3ad2ant1 1130 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1086 |
This theorem is referenced by: poxp3 8161 mapxpen 9174 lsmcv 21036 sltlpss 27853 archiabl 32927 trisegint 35657 linethru 35782 hlrelat3 38917 cvrval3 38918 cvrval4N 38919 2atlt 38944 atbtwnex 38953 1cvratlt 38979 atcvrlln2 39024 atcvrlln 39025 2llnmat 39029 lplnexllnN 39069 lvolnlelpln 39090 lnjatN 39285 lncvrat 39287 lncmp 39288 cdlemd9 39711 dihord5b 40764 dihmeetALTN 40832 dih1dimatlem0 40833 mapdrvallem2 41150 grumnudlem 43753 |
Copyright terms: Public domain | W3C validator |