Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvolnlelpln Structured version   Visualization version   GIF version

Theorem lvolnlelpln 39114
Description: A lattice plane cannot majorize a lattice volume. (Contributed by NM, 14-Jul-2012.)
Hypotheses
Ref Expression
lvolnlelpln.l = (le‘𝐾)
lvolnlelpln.p 𝑃 = (LPlanes‘𝐾)
lvolnlelpln.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
lvolnlelpln ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑃) → ¬ 𝑋 𝑌)

Proof of Theorem lvolnlelpln
Dummy variables 𝑟 𝑞 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1135 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑃) → 𝑌𝑃)
2 eqid 2725 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
3 lvolnlelpln.l . . . . 5 = (le‘𝐾)
4 eqid 2725 . . . . 5 (join‘𝐾) = (join‘𝐾)
5 eqid 2725 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
6 lvolnlelpln.p . . . . 5 𝑃 = (LPlanes‘𝐾)
72, 3, 4, 5, 6islpln2 39065 . . . 4 (𝐾 ∈ HL → (𝑌𝑃 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠)))))
873ad2ant1 1130 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑃) → (𝑌𝑃 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠)))))
91, 8mpbid 231 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑃) → (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))))
10 simp1l1 1263 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑃) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))) → 𝐾 ∈ HL)
11 simp1l2 1264 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑃) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))) → 𝑋𝑉)
12 simp1r 1195 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑃) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))) → 𝑞 ∈ (Atoms‘𝐾))
13 simp2l 1196 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑃) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))) → 𝑟 ∈ (Atoms‘𝐾))
14 simp2r 1197 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑃) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))) → 𝑠 ∈ (Atoms‘𝐾))
15 lvolnlelpln.v . . . . . . . . 9 𝑉 = (LVols‘𝐾)
163, 4, 5, 15lvolnle3at 39111 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) → ¬ 𝑋 ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))
1710, 11, 12, 13, 14, 16syl23anc 1374 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑃) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))) → ¬ 𝑋 ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))
18 simp33 1208 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑃) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))) → 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))
1918breq2d 5155 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑃) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))) → (𝑋 𝑌𝑋 ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠)))
2017, 19mtbird 324 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑃) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))) → ¬ 𝑋 𝑌)
21203exp 1116 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑃) ∧ 𝑞 ∈ (Atoms‘𝐾)) → ((𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) → ((𝑞𝑟 ∧ ¬ 𝑠 (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠)) → ¬ 𝑋 𝑌)))
2221rexlimdvv 3201 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑃) ∧ 𝑞 ∈ (Atoms‘𝐾)) → (∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠)) → ¬ 𝑋 𝑌))
2322rexlimdva 3145 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑃) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠)) → ¬ 𝑋 𝑌))
2423adantld 489 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑃) → ((𝑌 ∈ (Base‘𝐾) ∧ ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞(join‘𝐾)𝑟) ∧ 𝑌 = ((𝑞(join‘𝐾)𝑟)(join‘𝐾)𝑠))) → ¬ 𝑋 𝑌))
259, 24mpd 15 1 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑃) → ¬ 𝑋 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2930  wrex 3060   class class class wbr 5143  cfv 6543  (class class class)co 7416  Basecbs 17179  lecple 17239  joincjn 18302  Atomscatm 38791  HLchlt 38878  LPlanesclpl 39021  LVolsclvol 39022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-proset 18286  df-poset 18304  df-plt 18321  df-lub 18337  df-glb 18338  df-join 18339  df-meet 18340  df-p0 18416  df-lat 18423  df-clat 18490  df-oposet 38704  df-ol 38706  df-oml 38707  df-covers 38794  df-ats 38795  df-atl 38826  df-cvlat 38850  df-hlat 38879  df-llines 39027  df-lplanes 39028  df-lvols 39029
This theorem is referenced by:  lvolnelpln  39119
  Copyright terms: Public domain W3C validator
OSZAR »