Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvolnlelln Structured version   Visualization version   GIF version

Theorem lvolnlelln 39171
Description: A lattice line cannot majorize a lattice volume. (Contributed by NM, 14-Jul-2012.)
Hypotheses
Ref Expression
lvolnlelln.l = (le‘𝐾)
lvolnlelln.n 𝑁 = (LLines‘𝐾)
lvolnlelln.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
lvolnlelln ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) → ¬ 𝑋 𝑌)

Proof of Theorem lvolnlelln
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1135 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) → 𝑌𝑁)
2 eqid 2725 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
3 eqid 2725 . . . . 5 (join‘𝐾) = (join‘𝐾)
4 eqid 2725 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
5 lvolnlelln.n . . . . 5 𝑁 = (LLines‘𝐾)
62, 3, 4, 5islln2 39098 . . . 4 (𝐾 ∈ HL → (𝑌𝑁 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞)))))
763ad2ant1 1130 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) → (𝑌𝑁 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞)))))
81, 7mpbid 231 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) → (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))))
9 simp11 1200 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝐾 ∈ HL)
10 simp12 1201 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑋𝑉)
11 simp2l 1196 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑝 ∈ (Atoms‘𝐾))
12 simp2r 1197 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑞 ∈ (Atoms‘𝐾))
13 lvolnlelln.l . . . . . . . 8 = (le‘𝐾)
14 lvolnlelln.v . . . . . . . 8 𝑉 = (LVols‘𝐾)
1513, 3, 4, 14lvolnle3at 39169 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) → ¬ 𝑋 ((𝑝(join‘𝐾)𝑝)(join‘𝐾)𝑞))
169, 10, 11, 11, 12, 15syl23anc 1374 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → ¬ 𝑋 ((𝑝(join‘𝐾)𝑝)(join‘𝐾)𝑞))
17 simp3r 1199 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑌 = (𝑝(join‘𝐾)𝑞))
183, 4hlatjidm 38955 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑝(join‘𝐾)𝑝) = 𝑝)
199, 11, 18syl2anc 582 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → (𝑝(join‘𝐾)𝑝) = 𝑝)
2019oveq1d 7433 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → ((𝑝(join‘𝐾)𝑝)(join‘𝐾)𝑞) = (𝑝(join‘𝐾)𝑞))
2117, 20eqtr4d 2768 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑌 = ((𝑝(join‘𝐾)𝑝)(join‘𝐾)𝑞))
2221breq2d 5161 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → (𝑋 𝑌𝑋 ((𝑝(join‘𝐾)𝑝)(join‘𝐾)𝑞)))
2316, 22mtbird 324 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → ¬ 𝑋 𝑌)
24233exp 1116 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → ((𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞)) → ¬ 𝑋 𝑌)))
2524rexlimdvv 3200 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) → (∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞)) → ¬ 𝑋 𝑌))
2625adantld 489 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) → ((𝑌 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → ¬ 𝑋 𝑌))
278, 26mpd 15 1 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) → ¬ 𝑋 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2929  wrex 3059   class class class wbr 5149  cfv 6548  (class class class)co 7418  Basecbs 17181  lecple 17241  joincjn 18304  Atomscatm 38849  HLchlt 38936  LLinesclln 39078  LVolsclvol 39080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7374  df-ov 7421  df-oprab 7422  df-proset 18288  df-poset 18306  df-plt 18323  df-lub 18339  df-glb 18340  df-join 18341  df-meet 18342  df-p0 18418  df-lat 18425  df-clat 18492  df-oposet 38762  df-ol 38764  df-oml 38765  df-covers 38852  df-ats 38853  df-atl 38884  df-cvlat 38908  df-hlat 38937  df-llines 39085  df-lplanes 39086  df-lvols 39087
This theorem is referenced by:  lvolnelln  39176
  Copyright terms: Public domain W3C validator
OSZAR »