![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islln2 | Structured version Visualization version GIF version |
Description: The predicate "is a lattice line". (Contributed by NM, 23-Jun-2012.) |
Ref | Expression |
---|---|
islln3.b | ⊢ 𝐵 = (Base‘𝐾) |
islln3.j | ⊢ ∨ = (join‘𝐾) |
islln3.a | ⊢ 𝐴 = (Atoms‘𝐾) |
islln3.n | ⊢ 𝑁 = (LLines‘𝐾) |
Ref | Expression |
---|---|
islln2 | ⊢ (𝐾 ∈ HL → (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islln3.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | islln3.n | . . . 4 ⊢ 𝑁 = (LLines‘𝐾) | |
3 | 1, 2 | llnbase 39096 | . . 3 ⊢ (𝑋 ∈ 𝑁 → 𝑋 ∈ 𝐵) |
4 | 3 | pm4.71ri 559 | . 2 ⊢ (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝑁)) |
5 | islln3.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
6 | islln3.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
7 | 1, 5, 6, 2 | islln3 39097 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞)))) |
8 | 7 | pm5.32da 577 | . 2 ⊢ (𝐾 ∈ HL → ((𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝑁) ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞))))) |
9 | 4, 8 | bitrid 282 | 1 ⊢ (𝐾 ∈ HL → (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 ∃wrex 3059 ‘cfv 6548 (class class class)co 7418 Basecbs 17181 joincjn 18304 Atomscatm 38849 HLchlt 38936 LLinesclln 39078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7374 df-ov 7421 df-oprab 7422 df-proset 18288 df-poset 18306 df-plt 18323 df-lub 18339 df-glb 18340 df-join 18341 df-meet 18342 df-p0 18418 df-lat 18425 df-clat 18492 df-oposet 38762 df-ol 38764 df-oml 38765 df-covers 38852 df-ats 38853 df-atl 38884 df-cvlat 38908 df-hlat 38937 df-llines 39085 |
This theorem is referenced by: islpln5 39122 lplnnlelln 39130 llncvrlpln2 39144 2llnjN 39154 lvolnlelln 39171 |
Copyright terms: Public domain | W3C validator |