Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnjatN Structured version   Visualization version   GIF version

Theorem lnjatN 39339
Description: Given an atom in a line, there is another atom which when joined equals the line. (Contributed by NM, 30-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnjat.b 𝐵 = (Base‘𝐾)
lnjat.l = (le‘𝐾)
lnjat.j = (join‘𝐾)
lnjat.a 𝐴 = (Atoms‘𝐾)
lnjat.n 𝑁 = (Lines‘𝐾)
lnjat.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
lnjatN (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) → ∃𝑞𝐴 (𝑞𝑃𝑋 = (𝑃 𝑞)))
Distinct variable groups:   𝐴,𝑞   𝐵,𝑞   𝐾,𝑞   ,𝑞   𝑀,𝑞   𝑁,𝑞   𝑃,𝑞   𝑋,𝑞
Allowed substitution hint:   (𝑞)

Proof of Theorem lnjatN
StepHypRef Expression
1 simpl1 1188 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) → 𝐾 ∈ HL)
2 simpl2 1189 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) → 𝑋𝐵)
3 simprl 769 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) → (𝑀𝑋) ∈ 𝑁)
4 lnjat.b . . . 4 𝐵 = (Base‘𝐾)
5 lnjat.l . . . 4 = (le‘𝐾)
6 lnjat.a . . . 4 𝐴 = (Atoms‘𝐾)
7 lnjat.n . . . 4 𝑁 = (Lines‘𝐾)
8 lnjat.m . . . 4 𝑀 = (pmap‘𝐾)
94, 5, 6, 7, 8lnatexN 39338 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) → ∃𝑞𝐴 (𝑞𝑃𝑞 𝑋))
101, 2, 3, 9syl3anc 1368 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) → ∃𝑞𝐴 (𝑞𝑃𝑞 𝑋))
11 simp3l 1198 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞 𝑋)) → 𝑞𝑃)
12 simp1l1 1263 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞 𝑋)) → 𝐾 ∈ HL)
13 simp1l2 1264 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞 𝑋)) → 𝑋𝐵)
14 simp1rl 1235 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞 𝑋)) → (𝑀𝑋) ∈ 𝑁)
15 simp1l3 1265 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞 𝑋)) → 𝑃𝐴)
16 simp2 1134 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞 𝑋)) → 𝑞𝐴)
1711necomd 2986 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞 𝑋)) → 𝑃𝑞)
18 simp1rr 1236 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞 𝑋)) → 𝑃 𝑋)
19 simp3r 1199 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞 𝑋)) → 𝑞 𝑋)
20 lnjat.j . . . . . . 7 = (join‘𝐾)
214, 5, 20, 6, 7, 8lneq2at 39337 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑞𝐴𝑃𝑞) ∧ (𝑃 𝑋𝑞 𝑋)) → 𝑋 = (𝑃 𝑞))
2212, 13, 14, 15, 16, 17, 18, 19, 21syl332anc 1398 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞 𝑋)) → 𝑋 = (𝑃 𝑞))
2311, 22jca 510 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞 𝑋)) → (𝑞𝑃𝑋 = (𝑃 𝑞)))
24233exp 1116 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) → (𝑞𝐴 → ((𝑞𝑃𝑞 𝑋) → (𝑞𝑃𝑋 = (𝑃 𝑞)))))
2524reximdvai 3155 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) → (∃𝑞𝐴 (𝑞𝑃𝑞 𝑋) → ∃𝑞𝐴 (𝑞𝑃𝑋 = (𝑃 𝑞))))
2610, 25mpd 15 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) → ∃𝑞𝐴 (𝑞𝑃𝑋 = (𝑃 𝑞)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2930  wrex 3060   class class class wbr 5148  cfv 6547  (class class class)co 7417  Basecbs 17180  lecple 17240  joincjn 18303  Atomscatm 38821  HLchlt 38908  Linesclines 39053  pmapcpmap 39056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-proset 18287  df-poset 18305  df-plt 18322  df-lub 18338  df-glb 18339  df-join 18340  df-meet 18341  df-p0 18417  df-lat 18424  df-clat 18491  df-oposet 38734  df-ol 38736  df-oml 38737  df-covers 38824  df-ats 38825  df-atl 38856  df-cvlat 38880  df-hlat 38909  df-lines 39060  df-pmap 39063
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »