Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvrlln2 Structured version   Visualization version   GIF version

Theorem atcvrlln2 39024
Description: An atom under a line is covered by it. (Contributed by NM, 2-Jul-2012.)
Hypotheses
Ref Expression
atcvrlln2.l = (le‘𝐾)
atcvrlln2.c 𝐶 = ( ⋖ ‘𝐾)
atcvrlln2.a 𝐴 = (Atoms‘𝐾)
atcvrlln2.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
atcvrlln2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) → 𝑃𝐶𝑋)

Proof of Theorem atcvrlln2
Dummy variables 𝑟 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 1190 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) → 𝑋𝑁)
2 simpl1 1188 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) → 𝐾 ∈ HL)
3 eqid 2728 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
4 atcvrlln2.n . . . . . 6 𝑁 = (LLines‘𝐾)
53, 4llnbase 39014 . . . . 5 (𝑋𝑁𝑋 ∈ (Base‘𝐾))
61, 5syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) → 𝑋 ∈ (Base‘𝐾))
7 eqid 2728 . . . . 5 (join‘𝐾) = (join‘𝐾)
8 atcvrlln2.a . . . . 5 𝐴 = (Atoms‘𝐾)
93, 7, 8, 4islln3 39015 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾)) → (𝑋𝑁 ↔ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))))
102, 6, 9syl2anc 582 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) → (𝑋𝑁 ↔ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))))
111, 10mpbid 231 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) → ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟)))
12 simp1l1 1263 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝐾 ∈ HL)
13 simp1l2 1264 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑃𝐴)
14 simp2l 1196 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑞𝐴)
15 simp2r 1197 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑟𝐴)
16 simp3l 1198 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑞𝑟)
17 simp1r 1195 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑃 𝑋)
18 simp3r 1199 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑋 = (𝑞(join‘𝐾)𝑟))
1917, 18breqtrd 5178 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑃 (𝑞(join‘𝐾)𝑟))
20 atcvrlln2.l . . . . . . 7 = (le‘𝐾)
21 atcvrlln2.c . . . . . . 7 𝐶 = ( ⋖ ‘𝐾)
2220, 7, 21, 8atcvrj2 38938 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑃 (𝑞(join‘𝐾)𝑟))) → 𝑃𝐶(𝑞(join‘𝐾)𝑟))
2312, 13, 14, 15, 16, 19, 22syl132anc 1385 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑃𝐶(𝑞(join‘𝐾)𝑟))
2423, 18breqtrrd 5180 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑃𝐶𝑋)
25243exp 1116 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) → ((𝑞𝐴𝑟𝐴) → ((𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟)) → 𝑃𝐶𝑋)))
2625rexlimdvv 3208 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) → (∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟)) → 𝑃𝐶𝑋))
2711, 26mpd 15 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) → 𝑃𝐶𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2937  wrex 3067   class class class wbr 5152  cfv 6553  (class class class)co 7426  Basecbs 17187  lecple 17247  joincjn 18310  ccvr 38766  Atomscatm 38767  HLchlt 38854  LLinesclln 38996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-proset 18294  df-poset 18312  df-plt 18329  df-lub 18345  df-glb 18346  df-join 18347  df-meet 18348  df-p0 18424  df-lat 18431  df-clat 18498  df-oposet 38680  df-ol 38682  df-oml 38683  df-covers 38770  df-ats 38771  df-atl 38802  df-cvlat 38826  df-hlat 38855  df-llines 39003
This theorem is referenced by:  llnexatN  39026  llncmp  39027  2llnmat  39029  2llnmj  39065
  Copyright terms: Public domain W3C validator
OSZAR »